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Abstract

This paper studies the nonparametric identification and estimation of the
structural parameters, including the per period utility functions, discount fac-
tors, and state transition laws, of general dynamic programming discrete choice
(DPDC) models. I show an equivalence between the identification of general
DPDC model and the identification of a linear GMM system. Using such an
equivalence, I simplify both the identification analysis and the estimation prac-
tice of DPDC model. First, I prove a series of identification results for the
DPDC model by using rank conditions. Previous identification results in the
literature are based on normalizing the per period utility functions of one alter-
native. Such normalization could severely bias the estimates of counterfactual
policy effects. I show that the structural parameters can be nonparametrically
identified without the normalization. Second, I propose a closed form nonpara-
metric estimator for the per period utility functions, the computation of which
involves only least squares estimation. Neither the identification nor the estima-
tion requires terminal conditions, the DPDC model to be stationary, or having
a sample that covers the entire decision period. The identification results also
hold for the DPDC models with unobservable fixed effects.
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1 Introduction

The existing identification results (Magnac and Thesmar, 2002; Blevins, 2014) and
estimation methods for (non)stationary DPDC models are both conceptually com-
plicated and numerically difficult due to the complexity of (non)stationary dynamic
programming that is a recursive solution method. This paper will show that the
identification of (non)stationary DPDC models and their estimation can be greatly
simplified, because we will show that the identification of general DPDC models is
equivalent to the identification of a linear GMM system. So the identification of
DPDC models can be understood from the familiar rank conditions in linear mod-
els. Moreover, the per period utility functions and discount factors can be estimated
by a closed form linear estimator, which does not involve numerical optimization.
Monte Carlo studies show that my estimator is numerically stabler and substantially
faster than the existing estimators, including nested fixed point (NFXP) algorithm,
pseudo-maximum likelihood (PML), and nested pseudo-likelihood (NPL) algorithm.
Besides its numerical advantage, my estimator has wider application, because it does
requires terminal conditions, the DPDC model to be stationary, or having a sample
that covers the entire decision period. The equivalence between the identification of
DPDC and linear GMM also holds for the DPDC models with unobservable fixed
effects that are correlated with the observable state variables.

The idea of linear identification and estimation is inspired by the econometric
literature on dynamic game models. Pesendorfer and Schmidt-Dengler (2008), Ba-
jari, Chernozhukov, Hong, and Nekipelov (2009), Bajari, Hong, and Nekipelov (2010)
show that the Markovian equilibria of dynamic games with discrete choices can be
equivalently written as a system of equations linear in the per period utility functions.
Hence the identification of per period utility functions in dynamic game models is sim-
ilar to the identification of a linear GMM system. Moreover, the per period utility
functions can then be estimated by least squares. As a special case of the dynamic
game with discrete choices, the identification and estimation of infinite horizon sta-
tionary single agent DPDC models can also be addressed using the equivalence to a
linear GMM system (Pesendorfer and Schmidt-Dengler, 2008; Srisuma and Linton,
2012). Because the equivalence to a linear GMM has greatly simplified our under-
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standing of the identification of stationary DPDC models and their estimation, a
natural question is if such an equivalence exists for general DPDC models, especially
finite horizon nonstationary DPDC models. Finite horizon models are common in
labor economics, since households live for a finite time. This paper addresses this
question.

The DPDC model studied in this paper is general in three ways. First, the deci-
sion horizon can be finite or infinite. Second, all structural parameters, including per
period utility functions, discount factors and transition laws, are allowed to be time
varying. Third, we allow for unobservable fixed effects in the DPDC models. The
fixed effects could be correlated with the observable state variables. Fourth, we do not
assume that the per period utility function associated with one particular alternative
is known, or is normalized to be a known constant. This feature is important, because
normalization of the per period utility function will bias counterfactual policy pre-
dictions. In my empirical example, we consider the married woman’s counterfactual
labor force participation probability if her husband’s income growth became slower.
According to the Current Employment Statistics, the average hourly real earnings
in 2008 (January) and 2016 (June) grow at 3.7% and 1.7% in the United States.
According to the Current Population Survey, the labor force participation rates in
2008 (January) and 2016 (January) are 66.2% and 62.7% in the United States. So it
would be interesting to see how does female labor force participation rates change as
husbands’ earnings growth becomes slower. Without normalization assumption, we
found that the counterfactual labor force participation probabilities would be lower
than the actual ones for those women whose working experience is below the median.
However, with normalization assumption, the counterfactual women’s labor force par-
ticipation probabilities would be close to their actual ones, suggesting no effects on
female labor force participation from the slower earning growth.

The normalization derives from the analogy between dynamic and static choice.
In static discrete choice the conditional choice probabilities (CCP) only depend on
the differences between the payoffs of alternatives. So one can change payoffs of al-
ternatives so long as their differences are not changed. This ambiguity motivates the
normalization of the payoff of one alternative (Magnac and Thesmar, 2002; Bajari,
Benkard, and Levin, 2007; Pesendorfer and Schmidt-Dengler, 2008; Bajari, Cher-
nozhukov, Hong, and Nekipelov, 2009; Blevins, 2014). However, normalization in dy-
namic discrete choice models is not innocuous for counterfactual policy predictions.
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This point has been mentioned recently by some authors in a variety of settings, e.g.
Norets and Tang (2014); Arcidiacono and Miller (2015); Aguirregabiria and Suzuki
(2014); Kalouptsidi, Scott, and Souza-Rodrigues (2015).1 The intuition is that in a
dynamic discrete choice model, a forward-looking individual’s current choice depends
on future utility. This future utility depends on the per period utility functions of all
alternatives. Consider the normalization of setting the per period utility of the first
alternative to be zero for all states. Such a normalization will distort the effects of the
current choice on future utility, because the per period utility of the first alternative
does not depend on the state. When one consider counterfactual interventions, the
effects of the current choice on counterfactual future payoff will be also distorted,
hence the counterfactual choice probability will be biased.

Without imposing a normalization, we provide two alternative ways to identify
the per period utility functions and discount factors. One is to assume that there
are excluded state variables that do not affect per period utilities but affect state
transitions. When excluded state variables are not available, another way is to as-
sume that per period utility function is time invariant but that state transition laws
are time varying. The excluded variables restriction has been used to identify dis-
count factors in exponential discounting (Ching and Osborne, 2015) and hyperbolic
discounting (Fang and Wang, 2015), but it has not been used to identify per period
utility functions in general DPDC models. The closest work is Aguirregabiria and
Suzuki’s (2014) study of market entry and exit decisions, where the per period utility
function is equal to the observable revenue net of unobservable cost. Assuming that
the firms’ dynamic programming problem is stationary, and the discount factor is
known, they use exclusion restrictions to identify the cost function. However they
do not consider the identification of the discount factor and of nonstationary DPDC
models. Let us consider a binary choice model to explain the intuition why the exclu-
sion restrictions can identify the per period utility function without normalization.
The observable CCP is determined by the difference between the payoffs of the two
alternatives. In DPDC model, such a payoff difference is the sum of the difference
between per period utility functions and the difference between the discounted con-
tinuation value functions. Exclusion restrictions create “exogenous” variation that
can identify the value functions from the CCP. The identification of the per period

1We provide two propositions in the Supplemental Material showing the misleading consequence
of normalization for counterfactual analysis.
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utility functions follows from the Bellman equation.
When there is unobservable fixed effect that is correlated with the observable

state variables in the dynamic discrete choice model, we show how to identify the
model with control variables approach. Using control variables, we show that the
identification issue is still equivalent to the identification in linear GMM models.
Unlike Kasahara and Shimotsu (2009), the unobservable heterogeneity (here, fixed
effect) is not discrete type. More importantly, we are interested in the identification
of structural parameters, such as per period utility functions and discount factors,
rather the type-specific CCP in Kasahara and Shimotsu (2009). Hu and Shum (2012)
studies the identification of CCP and state transition law in the presence of continuous
unobservable heterogeneity, but they do not consider the identification of structural
parameters.

Using the equivalence to linear GMM, the estimation of DPDC models becomes
so simple that the per period utility functions and discount factors can be estimated
by a closed form linear estimator after estimating the conditional choice probabili-
ties (CCP) and the state transition distributions. The implementation of our linear
estimator is simple because only basic matrix operations are involved. Our linear esti-
mator can be applied to situations where the agent’s dynamic programming problem
is nonstationary, the panel data do not cover the whole decision period, and there are
no terminal conditions available. Such simplicity in computation and flexibility in
modeling are desirable in practice, because the existing estimation algorithms (Rust,
1987; Hotz and Miller, 1993; Aguirregabiria and Mira, 2002; Su and Judd, 2012) de-
pend on complicated numerical optimization and/or iterative updating algorithms,
and many of them cannot be applied when the dynamic programming problem is
nonstationary and no terminal conditions are available.

In section 2, we develop the DPDC model of which per period utility functions,
state transition distributions and discount factors are allowed to be time varying. In
section 3, we show the identification and estimation of a four-period DPDC model.
We then show the identification of general DPDC models in section 4. In section 5,
we show that the DPDC model can be estimated by simple closed-form estimators,
which do not involve numerical optimization. Numerical experiments in section 6
are conducted to check the performance of our estimators.2 As an empirical exam-

2Computation for the work described in this paper was supported by the University of Southern
California’s Center for High-Performance Computing (http://hpcc.usc.edu).
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ple, we estimate a female labor force participation model in section 7 and estimate
the woman’s counterfactual labor force participation probability when her husband’s
income growth becomes lower. The last section concludes the paper.

Notation. Let X, Y and Z be three random variables. We write X ⊥⊥ Y to denote
that X and Y are independent, and write X ⊥⊥ Y |Z to denote that conditional on Z,
X and Y are independent. Let f(X) be a real function of X. If X can take values
x1, . . . , xdx , we use f to denote the dx-dimensional vector (f(x1), . . . , f(xdx))ᵀ. For a
real number a, let an ≡ (a, . . . , a)ᵀ be an n-dimensional vector with entries all equal
to a.

2 Dynamic programming discrete choice model

2.1 The model

We restrict our attention to the binary choice case. The extension to multinomial
choice is in Remark 4 in section 4. In each period t, an agent makes a choice
Dt ∈ { 0, 1 } based on a vector of state variables Ωt ≡ (St, ε

0
t , ε

1
t ). Researchers only

observe the choice Dt and the state variable St. The choice Dt affects both the agent’s
instantaneous utility in period t and the distribution of the next period state variable
Ωt+1. Assumption 1 restricts the instantaneous utility to be additive in the unob-
served state variables εt ≡ (ε0t , ε

1
t )

ᵀ. Assumption 2 assumes that the state variable
Ωt is a controlled first-order Markov process. Both assumptions are standard in the
literature.

Assumption 1. The agent receives instantaneous utility ut(Ωt, Dt) in period t, and

ut(Ωt, Dt) = Dt · (µ1t (St) + ε1t ) + (1−Dt) · (µ0t (St) + ε0t ).

We call µdt (St) the (structural) per period utility function in period t.

Assumption 2. For any s < t, Ωt+1 ⊥⊥ (Ωs, Ds)|(Ωt, Dt).

Let T∗ ≤ ∞ be the last decision period. In each period t, the agent makes a
sequence of choices {Dt, . . . , DT∗} to maximize the expected remaining lifetime utility,

ut(Ωt, Dt) +
T∗∑

r=t+1

(
r−1∏
j=t

δj

)
EΩr [ur(Ωr, Dr)|Ωt, Dt],

where δt ∈ [0, 1) is the discount factor in period t. The agent’s problem is a Markov
decision process, which can be solved by dynamic programming. Let Vt(Ωt) be the
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value function in period t. The optimal choice Dt solves the Bellman equation,

Vt(Ωt) = max
d∈{ 0,1 }

µdt (St) + εdt + δt EΩt+1 [Vt+1(Ωt+1)|St, εt, Dt = d]. (2.1)

Without further restriction about the state transition distribution, the continuation
value EΩt+1 [Vt+1(Ωt+1)|St, εt, Dt] is non-separable from the unobserved state variable
εt. To avoid dealing with non-separable models, we make the following assumption.

Assumption 3. (i) The sequence {εt} is independent and identically distributed.

(ii) For each period t, St ⊥⊥ (εt, εt+1).

(iii) For each period t, St+1 ⊥⊥ εt|(St, Dt).

The assumption is standard in the literature, but we want to emphasize the implied
limitations. Assumption 3.(i) implies that the unobserved state variable εt does not
include the unobserved heterogeneity that is constant or serially correlated over time.
For example, suppose εdt = η + ωd

t , where η is unobserved heterogeneity, and ωd
t is

serially independent utility shock. Then εdt becomes serially correlated. Moreover, if η
is fixed effect that is correlated with the observed state variable St, Assumption 3.(ii)
is violated. If conditional on (St, Dt), the unobserved heterogeneity η can still affect
the distribution of St+1, Assumption 3.(iii) is violated.

We will return to the unobservable heterogeneity issue in subsection 4.3. There,
we consider the extension of the model allowing for fixed effect. It turns out that
our identification and estimation results can still be applied even in this general error
specification.

Applying Assumption 3, it can be verified that

EΩt+1 [Vt+1(Ωt+1)|St, εt, Dt] = ESt+1 [vt+1(St+1)|St, Dt],

where

vt+1(St+1) ≡ Eεt+1 [Vt+1(St+1, εt+1)|St+1] (2.2)

is called the ex ante value function in the literature. Because the conditional expec-
tations ESt+1(·|St, Dt = 0) and ESt+1(·|St, Dt = 1) as well as their difference will be
frequently used, define

Ed
t+1(·|St) ≡ ESt+1(·|St, Dt = d), d ∈ { 0, 1 },

E1/0
t+1(·|St) ≡ ESt+1(·|St, Dt = 1)− ESt+1(·|St, Dt = 0).

(2.3)
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Define the alternative specific value function (ASVF) vdt (St),

vdt (St) ≡ µdt (St) + δt EΩt+1 [Vt+1(Ωt+1)|St, ε0t , ε1t , Dt = d]

= µdt (St) + δt Ed
t+1[vt+1(St+1)|St].

(2.4)

Using the notation of the ASVF, the Bellman equation (2.1) becomes

Vt(St, εt) = max
d∈{ 0,1 }

vdt (St) + εdt , (2.5)

and the agent’s decision rule is simply

Dt = 1(ε0t − ε1t < v1t (St)− v0t (St)). (2.6)

Let G(·) be the CDF of ε̃t = ε0t − ε1t . In terms of G, the CCP pt(St) = P(Dt = 1|St)
is

pt(St) = G(v1t (St)− v0t (St))

= G(µ1t (St)− µ0t (St) + δt E1/0
t+1[vt+1(St+1)|St]).

(2.7)

When the CDF G is unknown, even the ASVF difference v1t (St) − v0t (St) cannot be
identified, let alone the per period utility functions µ0t and µ1t . Suppose that the CDF
G is known, the absolute level of µ0t (St) and µ1t (St) cannot be identified. Take δt = 0

for example, for any constant c ∈ R,

pt(St) = G(µ1t (St)− µ0t (St)) = G([µ1t (St) + c]− [µ0t (St) + c]).

The following assumption is to address these concerns.

Assumption 4. (i) The CDF G(·) of ε̃t ≡ ε0t−ε1t and E(ε0t ) are known. Moreover,
ε̃t is a continuous random variable with real line support, and the CDF G is
strictly increasing.

(ii) The observable state variable St is discrete with time invariant support S =

{ s1, . . . , sds }.

(iii) (Normalization). For every period t, let µ0t (s1) = 0.

Note that besides the presence of the unknown ex ante value function vt+1(St+1),
the CCP formula (2.7) is similar to the CCP in the binary static discrete choice
model studied by Matzkin (1992), in which the CDF G can be nonparametrically
identified. With the “special regressor” and the median assumption as assumed in
Matzkin (1992), the CDF G of ε̃t can be identified by following Matzkin’s arguments
(see also page 205 of Aguirregabiria, 2010).
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The normalization in Assumption 4.(iii) differs from the commonly used normal-
ization by letting

µ0t (s1) = µ0t (s2) = · · · = µ0t (sds) = 0, ∀t. (2.8)

The normalization (2.8) implies that the per period utility of alternative 0 does not
vary with respect to the values of the state variable St. It has been realized that the
normalization (2.8) is not innocuous for predicting counterfactual policy effects (see
e.g. Norets and Tang, 2014; Arcidiacono and Miller, 2015; Aguirregabiria and Suzuki,
2014; Kalouptsidi, Scott, and Souza-Rodrigues, 2015). In the Supplemental Material,
we show two things. First, the normalization (2.8) will bias the counterfactual policy
predictions, if the per period utility of alternative 0 depends on the value of St.
Second, the normalization of Assumption 4.(iii) will not bias the counterfactual policy
predictions.

By assuming discrete state space (Assumption 4.(ii)), the per period utility func-
tions µ0t (St) and µ1t (St), the CCP pt(St), the ASVF v0t (St) and v1t (St), and the ex ante
value functions vt(St) are all finitely dimensional. Denote µ0t = (µ0t (s1), . . . , µ

0
t (sds))

ᵀ,
and µ1t , pt, v0t , v1t and vt are defined similarly. It should be remarked that our iden-
tification results below hold for any finite number of states ds. Let f dt+1(St+1|St) be
the conditional probability function of St+1 given St and Dt = d, and let F d

t+1 be the
state transition matrix from St to St+1 given choice Dt = d. Denote f 1/0t+1(St+1|St) ≡
f 1t+1(St+1|St)− f 0t+1(St+1|St) and F 1/0

t+1 ≡ F 1
t+1 − F 0

t+1.

Example (Female labor force participation model). Our particular model is based
on Keane, Todd, and Wolpin (2011, section 3.1). In each year t, a married woman
makes a labor force participation decision Dt ∈ { 0, 1 }, where 1 is “to work” and 0 is
“not to work”, to maximize the expected remaining lifetime utility.

The per period utility depends on the household consumption (const) and the
number of young children (kidt) in the household.3 Consumption equals the house-
hold’s income net of child-care expenditures. The household income is the sum of
the husband’s income (yt) and the wife’s income (waget) if she works. The per-child
child-care cost is β if she works, and zero if she stays at home. So consumption is

const = yt + waget ·Dt − βkidt ·Dt.

3We do not model the fertility decision, and assume the arrival of children as an exogenous
stochastic process.
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Suppose the wage offer function takes the following form

waget = α1 + α2xpt + α3(xpt)
2 + α4edu + ωt,

where xpt is the working experience (measured by the number of prior periods the
woman has worked) of the woman in year t, edu is her education level, and ωt is a
random shock, which is independent of the wife’s working experience and education.
The wife’s working experience xpt evolves by

xpt+1 = xpt +Dt.

Assume the per period utility functions associated with the two alternatives are

u1t (St, ε
1
t ) = const + ε1t

= yt + α1 + α2xpt + α3(xpt)
2 + α4edu− βkidt + ε1t ,

u0t (St, ε
0
t ) = µ0t (yt, kidt) + ε0t .

(2.9)

Besides the observable state variables about the woman, we also observe her husband’s
working experience xpht and education level eduh. Given husband’s income yt, xpht

and eduh do not affect the per period utility but affect the husband’s future income.
These two state variables excluded from the per period utility function will be useful
for identification of the structural parameters. Let St = (yt, xpt, edu, kidt, xpht , eduh)

be the vector of observable state variables.
The problem is dynamic because the woman’s current working decision Dt affects

her working experience in the next period: xpt+1 = xpt+Dt. As in the general model,
the woman’s choice Dt solves the Bellman equation (2.5) with the per period utility
functions being substituted by equation (2.9).

We are interested in predicting the labor supply effects of some counterfactual
intervention, such as child-care subsidy by the government or slower wage growth due
to economic recession. In terms of the CCP, this means we would like to know the new
CCP after imposing these counterfactual interventions. To answer these questions,
we first need to identify and estimate the structural parameters.

2.2 Data and structural parameters of the model

Researchers only observe T consecutive decision periods, rather than the whole deci-
sion process. Denote the T sampling periods by 1, 2, . . . , T . It should be remarked
that the first sampling period 1 does not need to be the first decision period, nor
does the last sampling period T correspond to the terminal decision period T∗. De-
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note the data by D ≡ (D1, S1, . . . , DT , ST ), whose support is D ≡ ({ 0, 1 } × S)T .
Let θ denote the vector of structural parameters of this model including per period
utility functions (µ0t , µ1t ), discount factors (δt) and transition matrices (F 0

t , F 1
t ) in

each period t. It will be useful to reparameterize (µ0t , µ
1
t ) as (µ0t , µ

1/0
t ), where µ1/0t ≡

(µ1/0t (s1), . . . , µ
1/0
t (sds))

ᵀ with µ1/0t (s) ≡ µ1t (s) − µ0t (s). Let θt ≡ (µ0t , µ
1/0
t , δt, F

0
t , F

1
t )

for t = 1, . . . , T−1, and let θT ≡ (v0T , v
1
T , F

0
T , F

1
T ) instead of θT ≡ (µ0T , µ

1/0
T , δT , F

0
T , F

1
T ),

because the CCP pT (ST ) cannot be determined by the per period utility functions µ0T
and µ1/0T alone when T < T∗. Let θ ≡ (θ1, . . . , θT ), and let Θ be the parameter space.

We consider identification for such data that we call a short panel not only be-
cause short panel data are common in empirical studies, but also because the number
of time periods turns out to play an important role in the identification of DPDC
models. As shown below, when the discount factors are known, one needs at least
three consecutive periods to identify nonstationary DPDC models without the termi-
nal conditions. In the presence of terminal conditions, we can identify the model with
two consecutive periods data, when the discount factors are known. If the discount
factors are unknown, we need one additional period data to identify the discount
factors.

3 An example with four-period dynamic discrete choice

To develop some intuition for the general results in section 4 and 5, we consider a
four period dynamic discrete choice model.

The goal is to show that with the Exclusion Restriction below, we can identify
the per period utility functions without assuming that µ0t (s1) = · · · = µ0t (sds) = 0,
and the per period utility functions can be estimated by a closed form estimator. We
maintain the following three assumptions in this section. First, assume that ε0t and ε1t
are independent and follow the type-1 extreme value distribution (EVD). Second, the
state transition matrices F 0

t and F 1
t are time invariant and denoted by F 0 and F 1,

respectively. We also omit the subscript “t” in the conditional expectations E0
t , E1

t

and E1/0
t . Third, assume that the discount factor is constant over time and denoted

by δ.
We will study three cases below. In case 1 (subsection 3.1), researchers observe

the decisions in the last two decision periods. In case 2 (subsection 3.2), we have data
of the first two decision periods. In the last case (subsection 3.3), researchers observe
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the decisions in the first three decision periods. Since period 4 is the terminal decision
period, we have “terminal condition” in the first case, but not in the other two cases.
The comparison between case 1 and 2 will show that “terminal conditions” do not
help the identification of DPDC models. In the first two cases, we assume that the
discount factor δ is known. In the third case, in which one additional period data are
available, we identify the discount factor.

3.1 Identification and estimation with the data of the last two periods

In period 4 (terminal period), there is no continuation value for the choice. Hence
the decision rule in period 4 is described by a logit model: D4 = 1(ε04− ε14 < µ14(S4)−
µ04(S4)). The CCP p4(S4) in period 4 is

p4(S4) = G(µ1/04 (S4)), (3.1)

where G(·) is the logistic distribution function. It follows from the properties of the
EVD that

v4(S4) = Eε4 [V4(S4, ε4)|S4]

= Eε4

[
max

d∈{ 0,1 }
µd4(S4) + εd4

∣∣∣∣S4

]
= µ04(S4) + [γ − ln(1− p4(S4))]

≡ µ04(S4) + ψ(p4(S4))

(3.2)

where γ ≈ 0.5772 is Euler’s constant. It follows from the CCP formula (2.7) that the
CCP in period 3 is

p3(S3) = G(µ1/03 (S3) + δ E1/0[v4(S4)|S3])

= G
(
µ1/03 (S3) + δ E1/0[µ04(S4)|S3] + δ E1/0[ψ(p4(S4))|S3]

)
.

(3.3)

Let φ(p) ≡ ln p− ln(1− p) be the inverse of the logistic distribution function. It
follows from equation (3.1) and (3.3) that

φ(p4(S4)) = µ1/04 (S4), (3.4a)

φ(p3(S3)) = µ1/03 (S3) + δ E1/0[µ04(S4)|S3] + δ E1/0[ψ(p4(S4))|S3]. (3.4b)

From data (D3, S3, D4, S4), we can identify and estimate the state transition matrices
F 0 and F 1, and the CCP p3(S3) and p4(S4). The utility difference in the terminal
period µ1/04 is then identified from equation (3.4a). However, µ1/03 and µ04 cannot be
identified from equation (3.4b) without further restriction even when the discount
factor δ is known, because both µ1/03 (S3) and E1/0[µ04(S4)|S3] are unknown functions
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of S3.
When the discount factor δ is known, we will show how to identify and estimate

µ1/03 and µ04 using the following Exclusion Restriction. Note that µ14 = µ04 + µ1/04 is
identified, when µ04 and µ1/04 are identified.

Exclusion Restriction. The vector of observable state variables St has two parts
Xt and Zt. Let St = (Xt, Zt), where Xt ∈ X ≡ {x1, . . . , xdx } and Zt ∈ Z ≡
{ z1, . . . , zdz }. Assume that

µ1t (Xt, Zt) = µ1t (Xt) and µ0t (Xt, Zt) = µ0t (Xt).

Assume that S = X × Z, so that ds = dx · dz. In particular, let

S = vec


(x1, z1) (x2, z1) . . . (xdx , z1)

...
...

...
...

(x1, zdz) (x2, zdz) . . . (xdx , zdz)

 .
For dx = dz = 2, this means S = { (x1, z1), (x1, z2), (x2, z1), (x2, z2) }.

Suppose X = {x1, x2 } and Z = { z1, z2 } in this section. Evaluating equa-
tion (3.4b) at each (xi, zj) ∈ X × Z, we have

φ(p3(xi, zj)) = µ1/03 (xi) + δ E1/0[µ04(X4)|xi, zj] + δ E1/0[ψ(p4(S4))|xi, zj], (3.5)

for i, j = 1, 2. For each xi ∈ X , the difference φ(p3(xi, z1)) − φ(p3(xi, z2)) depends
linearly on µ04, but not on µ1/03 . We are going to identify µ04 using the differences
φ(p3(xi, z1))− φ(p3(xi, z2)), i = 1, 2. Then µ1/03 is identified by the above the display.
For i = 1, 2, using the difference φ(p3(xi, z1))− φ(p3(xi, z2)), we have

bi = E1/0[µ04(X4)|xi, z1]− E1/0[µ04(X4)|xi, z2] (3.6)

with bi, i = 1, 2, being defined by

bi ≡
(
δ−1φ(p3(xi, z1))− E1/0[ψ(p4(S4))|xi, z1]

)
−
(
δ−1φ(p3(xi, z2))− E1/0[ψ(p4(S4))|xi, z2]

)
.

Equation (3.6) can be organized as the following linear system of equations,

Aµ04 = b, (3.7)

where b ≡ (b1, b2)
ᵀ and

A ≡

f 1/0(x1|x1, z1)− f 1/0(x1|x1, z2) f 1/0(x2|x1, z1)− f 1/0(x2|x1, z2)

f 1/0(x1|x2, z1)− f 1/0(x1|x2, z2) f 1/0(x2|x2, z1)− f 1/0(x2|x2, z2)

 .
13



Using the notation F 1/0 = F 1 − F 0, the matrix A can be written alternatively as
follows,

A = MF 1/0(I2 ⊗ 12),

where I2 is the 2× 2 identity matrix, “⊗” is Kronecker product, 12 = (1, 1)ᵀ, and

M ≡

[
1 −1 0 0

0 0 1 −1

]
. (3.8)

The linear system of equations like equation (3.7) will be frequently encountered in
the sequel. The matrix A will always depend only on the state transition matrices
and the discount factors; the vector b will always depend only on the CCP and
the discount factors. However, their explicit definitions will change with respect to
different model specifications. Note that A 12 = 02. Hence 12 is a non-zero eigenvector
of matrix A associated with the eigenvalue 0. The matrix A cannot have full rank.
If rankA = 1, the solution set of equation (3.7) is {A+b+ c · 12 : c ∈ R }, where
A+ is the Moore-Penrose pseudoinverse of A (see lemma A.1 for proof). So the
solution for µ04 is unique up to a constant that does not change with respect to states.
Note that if X4 ⊥⊥ Z3|(X3, D3), both columns of A are zero, hence rankA = 0.
Though the solution for µ04 is not unique, we have a unique solution for the utility
difference µ1/03 = (µ1/03 (x1), µ

1/0
3 (x2))

ᵀ. Let µ04 = A+b + c · 12 be an arbitrary solution
of equation (3.7), it follows from equation (3.5) that

µ1/03 (xi) = φ(p3(xi, zj))− δ

[
f 1/0(x1|xi, zj)
f 1/0(x2|xi, zj)

]ᵀ (
A+b+ c · 12

)
− δ E1/0[ψ(p4(S4))|xi, zj].

= φ(p3(xi, zj))− δ

[
f 1/0(x1|xi, zj)
f 1/0(x2|xi, zj)

]ᵀ (
A+b

)
− δ E1/0[ψ(p4(S4))|xi, zj],

for both j = 1 and 2. Note that the above display does not depend on the unknown
constant c, so µ1/03 (xi) is identified for i = 1, 2. It should be remarked that µ1/03 (xi) is
linear in the discount factor δ, and such linearity will be used to identify the discount
factor in subsection 3.3.

The per period utility function µ04 = (µ04(x1), µ
0
4(x2))

ᵀ is identified with the nor-
malization µ04(x1) = 0 (Assumption 4.(iii)). With such normalization, we can identify
µ04 as

µ04 =

[
0 0

−1 1

]
A+b.

To estimate µ1/03 and µ04, we only need to estimate the difference between the state
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transition matrices F 0 and F 1, and the CCP p3(S3) and p4(S4), with which A and b
are then estimated. The per period utility functions µ1/03 and µ04 can be estimated by
the above displays after substituting the unknowns with their estimates.

We end case 1 with several remarks about the identifying power of the parametric
specification of the per period utility functions.

Remark 1 (Identification of discount factor using parametric specification, Exclusion
Restriction and terminal conditions). Suppose

µ1/0t (Xt) = αt,0 +Xᵀ
t αt,1 and µ0t (Xt) = βt,0 +Xᵀ

t βt,1. (3.9)

Under the above specification, equation (3.5) becomes

φ(p3(S3)) = α3,0 +Xᵀ
3α3,1 + E1/0 (Xᵀ

4 |X3, Z3) (δβ4,1)− E1/0 [ψ(p4(S4))|X3, Z3] δ.

Note that the intercept term β4,0 disappears because E1/0(β4,0|X3, Z3) = 0, and this
corresponds to our earlier conclusion that the per period utility function µ04 is iden-
tified up to a constant. It follows that (α3,0, α3,1, δβ4,1, δ) can be identified if X3,
E1/0(X4|X3, Z3) and E1/0[ψ(p4(S4))|X3, Z3] are not linearly dependent.

Remark 2. In general the discount factor is not identifiable with two periods data
even with the Exclusion Restriction. Without parametric specification about the per
period utility functions, we have

φ(p3(X3, Z3)) = µ1/03 (X3) + δ E1/0[µ04(X4)|X3, Z3] + δ E1/0[ψ(p4(S4))|X3, Z3].

Let U be the space of the per period utility function µ04(X4). The linear specification
µ0t = βt,0 +Xᵀ

t βt,1 in Remark 1 assumes that U is the set of all linear functions of X4.
The discount factor δ may not be identified, because δ E1/0[µ04(X4)|X3, Z3] could be
any function of (X3, Z3). If the equation of unknown function g(X4),

E1/0[g(X4)|X3, Z3] = E1/0[ψ(p4(X4, Z4))|X3, Z3],

has a solution in U , the discount factor cannot be identified.4 (In this particular case,
there is always a solution because the CCP p4(S4) in the terminal period depends
only on X4 by the Exclusion Restriction.) Suppose g(X4) is one solution, then let
µ̃04(X4) ≡ µ4(X4)− g(X4). We have

φ(p3(X3, Z3)) = µ1/03 (X3)+(δ+c) E1/0[µ̃04(X4)|X3, Z3]+(δ+c) E1/0[ψ(p4(S4))|X3, Z3],

4In Remark 1, in order to identify the discount factor δ, we require that E1/0(X4|X3, Z3) are
E1/0[ψ(p4(S4))|X3, Z3] are not linearly dependent. Note that this is equivalent to the condition here
that the equation E1/0[g(X4)|X3, Z3] = E1/0[ψ(p4(S4))|X3, Z3] has no solution in U , which is the set
of all linear functions of X4 given the linear specification in Remark 1.

15



for any c such that 0 < δ + c < 1, and the discount factor is not identified.

Remark 3. Without the Exclusion Restriction, the per period utility functions are
not identifiable in general even with the linear specification (3.9) and the terminal
conditions. Suppose there is no excluded variable Zt, and the state variable St = Xt

is a scalar. Assume that Xt follows an autoregressive process,

Xt = ρ0 + ρd1Xt−1 + ωt, d ∈ { 0, 1 },

with E(ωt|Xt−1) = 0. Let ρ1/01 = ρ11 − ρ01. Equation (3.5) becomes

φ(p3(X3)) = α3,0 +X3(α3,1 + ρ1/01 δβ4,1)− E1/0[ln(1− p4(X4))|X3]δ.

We can only identify (α3,1 +ρ1/01 δβ4,1) as a whole. However, if one is willing to assume
that the per period utility functions are time invariant, so that α3,1 = α4,1, we then can
identify β4,1 separately from the sum (α3,1 + ρ1/01 δβ4,1), because α3,1 = α4,1, ρ1

/0
1 and

δ are identified (α4,1 is identified because µ1/04 (S4) is identified from equation (3.4a)).
This observation will be generalized to Proposition S.2 in the Supplemental Material.

3.2 Identification and estimation with data of the first two periods

Suppose now researchers observe the decisions in the first two periods only, hence
there is no terminal condition in this case. It follows from equation (2.7) that the
CCP in period 2 and 1 are

p2(S2) = G(µ1/02 (S2) + δ E1/0[v3(S3)|S2]), (3.10)

p1(S1) = G(µ1/01 (S1) + δ E1/0[v2(S2)|S1]). (3.11)

It is similar to the derivations in equation (3.2) that we have

v2(S2) = Eε2 [V3(S3, ε3)|S2] = µ02(S2) + δ E0[v3(S3)|S2] + ψ(p2(S2)). (3.12)

Similar to equation (3.4), we have the following equations from equation (3.10)-
(3.12),

φ(p1(S1)) = µ1/01 (S1) + δ E1/0[v2(S2)|S1], (3.13a)

φ(p2(S2)) = µ1/02 (S2) + δ E1/0[v3(S3)|S2], (3.13b)

v2(S2) = µ02(S2) + δ E0[v3(S3)|S2] + ψ(p2(S2)). (3.13c)

Without terminal condition, the per period utility functions difference µ1/02 cannot be
identified from equation (3.13b). As in case 1 of subsection 3.1, the other parameters,
µ1/01 , µ02 and δ, are not identified. So we conclude that the terminal condition only
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helps identify the difference between the per period utility functions in the terminal
period.

Applying the Exclusion Restriction, equation (3.13) becomes

φ(p1(xi, zj)) = µ1/01 (xi) + δ E1/0[v2(S2)|xi, zj], i, j = 1, 2, (3.14a)

φ(p2(xi, zj)) = µ1/02 (xi) + δ E1/0[v3(S3)|xi, zj], i, j = 1, 2, (3.14b)

v2(xi, zj) = µ02(xi) + δ E0[v3(S3)|xi, zj] + ψ(p2(xi, zj)), i, j = 1, 2. (3.14c)

We want to identify µ1/01 , µ1/02 and µ02 by solving
(
µ1/01 , µ1/02 , µ02, v2, v3

)
explicitly from

equation (3.14b). Note that the per period utility function µ01 does not appear in the
above equations, hence cannot be identified. We solve equation (3.14b) by following
the steps below.

Step 1: Eliminate µ1/01 , µ1/02 and µ02 from equation (3.14b). Let φt(i, j) ≡
φ(pt(xi, zj)), ψt(i, j) ≡ ψ(pt(xi, zj)) and v̄3(S3) ≡ δv3(S3). We have the following,

δ−1(φ1(i, 1)− φ1(i, 2)) = E1/0[v2(S2)|xi, z1]− E1/0[v2(S2)|xi, z2],

φ2(i, 1)− φ2(i, 2) = E1/0[v̄3(S3)|xi, z1]− E1/0[v̄3(S3)|xi, z2],

ψ2(i, 1)− ψ2(i, 2) = v2(xi, z1)− v2(xi, z2)− E0[v̄3(S3)|xi, z1] + E0[v̄3(S3)|xi, z2],

for i = 1, 2. When the discount factor δ is known, the above system is equivalent to

A

[
v2

v̄3

]
= b2, (3.15)

where the unknown is[
v2

v̄3

]
= vec

[
v2(x1, z1) v2(x2, z1) v̄3(x1, z1) v̄3(x2, z1)

v2(x1, z2) v2(x2, z2) v̄3(x1, z2) v̄3(x2, z2)

]
,

the coefficient matrix A is a 6× 8 matrix,

A ≡

MF 1/0 0

0 MF 1/0

M −MF 0

 ,
with the M matrix as defined by equation (3.8), and b2 is a 6-dimensional vector,

b2 ≡ vec

[
(φ1(1, 1)− φ1(1, 2))/δ φ2(1, 1)− φ2(1, 2) ψ2(1, 1)− ψ2(1, 2)

(φ1(2, 1)− φ1(2, 2))/δ φ2(2, 1)− φ2(2, 2) ψ2(2, 1)− ψ2(2, 2)

]
.

Step 2: Solve v2 and v̄3 from equation (3.15). Let A+ be the Moore-Penrose
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pseudoinverse of matrix A, then [
v+2

v̄+3

]
≡ A+b2

solves equation (3.14b). Because we need to use v+t and v̄+t+1 separately, it is useful
to split the matrix A+ into two parts:

A+ =

[
A+
u

A+
l

]
,

where A+
u and A+

l are the 4×6 matrices formed by the first and last 4 rows of matrix
A+, respectively. Then [

v+2

v̄+3

]
=

[
A+
u b2

A+
l b2

]
.

If rankA = 6, we know from lemma A.2 that the solution set of equation (3.15) is
that {[

v+2 + c2 · 14

v̄+3 + c3 · 14

]
: c2, c3 ∈ R

}
.

Step 3: Identify the per period utility functions µ1/01 , µ1/02 and µ02. Suppose
rankA = 6, and let v2 = v+2 + c2 · 14 and v̄3 = v̄+3 + c3 · 14 be arbitrary solutions of
equation (3.15). Let

f 1/0(i, j) ≡ (f 1/0(x1, z1|xi, zj), f 1/0(x1, z2|xi, zj), f 1/0(x2, z1|xi, zj), f 1/0(x2, z2|xi, zj))
ᵀ
.

Then associated with v2 and v̄3, we have the following from equation (3.14b): for
j = 1, 2,

µ1/01 (xi) = φ(p1(xi, zj))− δf 1/0(i, j)
ᵀ
A+
u b2, (3.16)

µ1/02 (xi) = φ(p2(xi, zj))− f 1/0(i, j)
ᵀ
A+
l b2, (3.17)

µ02(xi) = v+2 (xi, zj)− f 1/0(i, j)
ᵀ
A+
l b2 − ψ(p2(xi, zj)) + (c2 − c3).

The constant c2− c3 in µ02(xi) can be determined by the normalization condition that
µ02(x1) = 0. So we conclude that the per period utility functions µ1/01 , µ1/02 and µ02 are
identified.

Given the explicit formulas for the per period utility functions, their estimation
is easy. We again estimate the CCP and the state transition matrices first, then plug
their estimates into the above formulas to estimate the per period utility functions.

18



3.3 Identification of the discount factor with three-period data

Suppose we have data (D1, S1, D2, S2, D3, S3). Applying the identification arguments
of case 2 (subsection 3.2) with data (D1, S1, D2, S2) and data (D2, S2, D3, S3), respec-
tively, we will have two formulas for µ1/02 (xi):

µ1/02 (xi) = φ(p2(xi, zj))− δf 1/0(i, j)
ᵀ
A+
u b3, (3.18)

µ1/02 (xi) = φ(p2(xi, zj))− f 1/0(i, j)
ᵀ
A+
l b2, (3.19)

where equation (3.18) follows from equation (3.16) with data (D2, S2, D3, S3), and
equation (3.19) follows from (3.17) with data (D1, S1, D2, S2). Equation (3.18) and
(3.19) give the following equation,

δf 1/0(i, j)
ᵀ
A+
u b3 = f 1/0(i, j)

ᵀ
A+
l b2, (3.20)

about the discount factor δ. In the Supplemental Material, we derived the solution
of the discount factor δ. We list the conclusion here:

δ =
r2,u(2, j)(r2,l(1, j)− r3,u(1, j))− r2,u(1, j)(r2,l(2, j)− r3,u(2, j))

r3,l(1, j)r2,u(2, j)− r3,l(2, j)r2,u(1, j)
, (3.21)

where

r3,l(i, j) ≡ hu(i, j)b3,l, r3,u(i, j) ≡ hu(i, j)b3,u,

r2,u(i, j) ≡ hl(i, j)b2,u, r2,l(i, j) ≡ hl(i, j)b2,l,

hu(i, j) ≡ f 1/0(i, j)
ᵀ
A+
u , hl(i, j) ≡ f 1/0(i, j)

ᵀ
A+
l ,

bt,u ≡ vec

[
φt−1(1, 1)− φt−1(1, 2) 0 0

φt−1(2, 1)− φt−1(2, 2) 0 0

]
,

bt,l ≡ vec

[
0 φt(1, 1)− φt(1, 2) ψt(1, 1)− ψt(1, 2)

0 φt(2, 1)− φt(2, 2) ψt(2, 1)− ψt(2, 2)

]
.

According to equation (3.21), it is necessary that the denominator r̃ ≡ r3,l(1, j)r2,u(2, j)−
r3,l(2, j)r2,u(1, j) 6= 0. In the Supplemental Material, we show that to ensure γ̃ 6= 0,
it is necessary that (i) the choice Dt changes the state transition distributions; (ii)
the state variable Xt should affect the difference between the state transition distri-
butions under the two alternatives given the excluded variable Zt; (iii) the excluded
variable Zt should still change the CCP conditional on Xt.
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4 Identification of structural parameters

We first show that the identification of DPDC models is equivalent to the identifi-
cation of a linear GMM model. Then, applying this equivalence, we prove a list of
identification results. At the end, we consider the extension to allow for unobservable
heterogeneity.

4.1 Linear GMM representation of DPDC models

Our DPDC model maps its structural parameters θ to a joint probability function
f(D; θ) of data D ≡ (D1, S1, . . . , DT , ST ). The structural parameters θ are identified
if for any f(D) ∈ { f(D; θ) : θ ∈ Θ }, the system of equations

f(D) = f(D; θ), ∀D ∈ D, (4.1)

has a unique solution for θ in the parameter space Θ.
Let ~St ≡ (S1, . . . , St−1)

ᵀ and ~Dt ≡ (D1, . . . , Dt−1)
ᵀ. We can always write

f(D) = f(S1)P(D1|S1)
T∏
t=2

ft(St|~St, ~Dt)P(Dt|St, ~St, ~Dt). (4.2)

By the Markovian assumptions 2 and 3, we have ft(St|~St, ~Dt) = ft(St|St−1, Dt−1) and
P(Dt|~St, ~Dt) = P(Dt|St). So equation (4.2) equals the following,

f(D) = f1(S1)P(D1|S1)
T∏
t=2

P(Dt|St)ft(St|St−1, Dt−1),

where P(Dt|St) = (pt(St))
Dt(1− pt(St))1−Dt . Similarly, we can decompose f(D; θ) by

f(D; θ) = f1(S1; θ)P(D1|S1; θ)
T∏
t=2

P(Dt|St; θ)ft(St|St−1, Dt−1; θ),

where P(Dt|St; θ) = (pt(St; θ))
Dt(1− pt(St; θ))1−Dt . Because of the above decompo-

sition of f(D) and f(D; θ), it can be verified that equation (4.1) is equivalent to the
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following5

f1(S1) = f1(S1; θ), (4.3a)

ft+1(St+1|St, Dt) = ft+1(St+1|St, Dt; θ), t = 1, . . . , T − 1, (4.3b)

pt(St) = pt(St; θ), t = 1, . . . , T. (4.3c)

We conclude from equation (4.3a) and (4.3b) that the state transition probabilities
are identified. In the remainder of the identification analysis, we assume that the
state transition probabilities are known and focus on the identification of per period
utility functions (µ0t and µ

1/0
t ) and discount factors (δt).

The attention now is equation (4.3c), which requires the explicit form of the CCP
pt(St; θ) in terms of the structural parameters θ. It follows from the CCP formula of
equation (2.7) that

pt(St; θ) = G(µ1/0t (St) + δt E1/0
t+1[vt+1(St+1)|St]), t = 1, . . . , T − 1, (4.4)

pT (ST ; θ) = G(v1T (ST )− v0T (ST )), (4.5)

where G is the CDF of ε̃ ≡ ε0t − ε1t . Because the CDF G is known and strictly
increasing (Assumption 3.(i)), its inverse φ(·) ≡ G−1(·) is known. So that

φ(pt(St; θ)) = v1t (St)− v0t (St), t = 1, . . . , T. (4.6)

It should be noted that the ex ante value functions { vt+1 : t = 1, . . . , T − 1 } in
equation (4.4) are not structural parameters. So we express vt(St) in terms of the
structural parameters. It follows from the definition of vt(St) in equation (2.2) and

5Take T = 2 for example, so that D = (D1, S1, D2, S2). If equation (4.3) holds, we clearly
have f(D) = f(D; θ). Suppose f(D) = f(D; θ), and we will show equation (4.3). We first have
f1(S1) =

∑
D1,D2,S2

f(D) and f1(S1; θ) =
∑

D1,D2,S2
f(D; θ). From f(D) = f(D; θ), we con-

clude f1(S1) = f1(S1; θ). The notation
∑

D1,D2,S2
means sum over all values of (D1, D2, S2) in

their support. We next have f(S1, D1) =
∑

D2,S2
f(D) and f(S1, D1; θ) =

∑
D2,S2

f(D; θ), hence
f(S1, D1) = f(S1, D1; θ). Because f(S1, D1) = f1(S1)P(D1|S1), f(S1, D1; θ) = f1(S1; θ)P(D1|S1; θ)
and f1(S1) = f1(S1; θ), we conclude P(D1|S1) = P(D1|S1; θ), which is equivalent to p1(S1) =
p1(S1; θ). Following the same strategy, we conclude f(S1, D1, S2) = f(S1, D1, S2; θ), which implies
that f2(S2|S1, D1) = f2(S2|S1, D1; θ) as f(S1, D1) = f(S1, D1; θ). We conclude p2(S2) = p2(S2; θ)
by f(D) = f(D; θ) and f(S1, D1, S2) = f(S1, D1, S2; θ).
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the Bellman equation (2.5) that

vt(St) =

∫
max{v0t (St) + ε0t , v

1
t (St) + ε1t} dF (ε0t , ε

1
t )

= v0t (St) +

∫
max{ε0t , v1t (St)− v0t (St) + ε1t} dF (ε0t , ε

1
t )

= v0t (St) +

[
E(ε0t ) +

∫
max{0, φ(pt(St; θ))− ε̃t} dG(ε̃t)

]
= v0t (St) + ψ(pt(St; θ)),

where ψ depends only on the CDF G of the utility shocks (ε0t , ε
1
t )

ᵀ. Replacing v0t in
the above display with its definition in equation (2.4), we have

vt(St) = µ0t (St) + δt E0
t+1[vt+1(St+1)|St] + ψ(pt(St; θ)), t < T,

vT (ST ) = v0T (ST ) + ψ(pT (ST ; θ)).
(4.7)

Note that v0T ∈ θT and pT (ST ; θ) = G(v1T (ST ) − v0T (ST )) are determined by θT . So
that vT (ST ) is completely determined by θT .

Substituting pt(St; θ) in equation (4.3c) with equation (4.4) and (4.5), we have the
following

pt(St) = G(µ1/0t (St) + δt E1/0
t+1[vt+1(St+1)|St]), t = 1, . . . , T − 1,

pT (ST ) = G(v1T (ST )− v0T (ST )),

vt(St) = µ0t (St) + δt E0
t+1[vt+1(St+1)|St] + ψ(pt(St; θ)), t = 2, . . . , T − 1,

vT (ST ) = v0T (ST ) + ψ(pT (ST ; θ)).

In this system of equations, the known objects are the CCP { pt(St) : t = 1, . . . , T }
and the state transition matrices hidden in the conditional expectation operators
E1/0
t+1(·|St) and E0

t+1(·|St); the unknowns are per period utility functions {µ1/01 , . . . , µ1/0T−1,

µ02, . . . , µ
0
T−1}, ex ante value functions {v2, . . . , vT}, the two ASVF v0T and v1T , and

the discount factors {δ1, . . . , δT−1}. One component of the structural parameters is
identified iff the above system of equations has a unique solution for it.

Two remarks help to simplify the above system of equations. First, using the
invertibility of the CDF G and the identities pt(St; θ) = pt(St), the above system has
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the same solutions as

φ(pt(St)) = µ1/0t (St) + δt E
1/0
t+1[vt+1(St+1)|St], t = 1, . . . , T − 1, (4.8a)

φ(pT (ST )) = v1T (ST )− v0T (ST ), (4.8b)

vt(St) = µ0t (St) + δt E
0
t+1[vt+1(St+1)|St] + ψ(pt(St)), t = 2, . . . , T − 1, (4.8c)

vT (ST ) = v0T (ST ) + ψ(pT (ST )). (4.8d)

Second, equation (4.8b) and (4.8d) state that v0T and v1T are uniquely determined
by vT . Hence, in order to solve for (θ1, . . . , θT ) from equation (4.8), we can solve
for θ1, . . . , θT−1 and vT . Moreover, the solutions of (θ1, . . . , θT−1, vT ), which appears
only in equation (4.8a) and (4.8c), do not depend on equation (4.8b) and (4.8d). So
equation (4.8) has the same solution for (θ1, . . . , θT−1, vT ) as the following system,{

φ(pt(st)) = µ1/0t (st) + δt E1/0
t+1[vt+1(St+1)|st], t = 1, . . . , T − 1,

ψ(pt(st)) = vt(st)− µ0t (st)− δt E0
t+1[vt+1(St+1)|st], t = 2, . . . , T − 1.

(ID)

The identification analysis below will be based on checking if there is a unique solution
for (some parts of) (θ1, . . . , θT−1, vT ) by solving (θ1, . . . , θT−1, vT ) from equation (ID).

Equation (ID) has the feature that given the discount factors δt, it is linear in all
the other unknowns; meanwhile, given the other unknowns, equation (ID) is linear in
the discount factors. When the discount factors are known, the uniqueness of solution
is very easy to check because equation (ID) is linear in all the other unknowns. More
explicitly, using the notation of F 0

t+1 and F
1/0
t+1, equation (ID) can be written as follows,{

φ(pt) = µ1/0t + δtF
1/0
t+1vt+1, t = 1, . . . , T − 1,

ψ(pt) = vt − µ0t − δtF 0
t+1vt+1, t = 2, . . . , T − 1,

(ID’)

where

φ(pt) ≡ (φ(pt(s1)), . . . , φ(pt(sds)))
ᵀ and ψ(pt) ≡ (ψ(pt(s1)), . . . , ψ(pt(sds)))

ᵀ.

In this sense, we claim that the identification of DPDC models is equivalent to iden-
tification of a linear GMM system, henceforth a familiar problem. The necessary
condition for identification is that the number of equations is greater than the num-
ber of unknowns (order condition). If the order condition fails, we shall consider
restrictions that can eliminate certain number of unknowns, or add more equations
by increasing the number of time periods T in panel data.
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4.2 Identification of DPDC models by the linear GMM representation

A sequence of identification results will be derived by using the linear GMM rep-
resentation of the DPDC model in equation (ID). The unknowns in equation (ID)
are {µ1/01 , . . . , µ1/0T−1, µ

0
2, . . . , µ

0
T−1, v2, . . . , vT , δ1, . . . , δT−1 }. Without restriction, equa-

tion (ID) has (2T−3) ·ds equations with (3T−4) ·ds+(T−1) unknowns. This implies
that the structural parameters are not identified even when all discount factors are
known (removing T − 1 unknowns). The non-identification of the DPDC model has
long been known in the literature (Rust, 1994; Magnac and Thesmar, 2002). The
problem of interests is what restrictions shall we use? We focus on the identification
using the Exclusion Restriction stated in section 3.

Under the Exclusion Restriction, µdt = (µdt (x1), . . . , µ
d
t (xdx))

ᵀ is a dx-dimensional
vector. The Exclusion Restriction is satisfied in the female labor force participation
example, where St = (yt, xpt, edu, kidt, xpht , eduh) with Xt = (yt, xpt, edu, kidt) and
Zt = (xpht , eduh). In general, given a set of state variables Xt that affect per period
utilities, one searches for Zt by looking for the variables that affect Xt+1 but not affect
per period utilities given Xt. For example, in Rust’s (1987) bus engine replacement
application, Xt is the mileage of the bus. Then Zt could be characteristics of the
bus’ route, which will affect the bus’ mileage in the next period, but not the current
maintenance cost given the mileage.

We have shown the identification power of the Exclusion Restriction in the pre-
vious section. Below, we provide more general identification results. Applying the
Exclusion Restriction, equation (ID) becomes φ(pt(Xt, Zt)) = µ1/0t (Xt) + δt E

1/0
t+1[vt+1(St+1)|Xt, Zt], t = 1, . . . , T − 1,

ψ(pt(Xt, Zt)) = vt(Xt, Zt)− µ0t (Xt)− δt E0
t+1[vt+1(St+1)|Xt, Zt], t = 2, . . . , T − 1.

(4.9)

There are (2T − 3) · dx + (T − 1) · ds + (T − 1) unknowns and (2T − 3) · ds equations.
When the discount factors are known (removing T −1 unknowns), dz ≥ 3 and T ≥ 3,
we have more equations than unknowns. It should be remarked that when T < 3, the
order condition always fails regardless of the value of dz. When T = 2, we have only

φ(p1(X1, Z1)) = µ1/01 (X1) + δ1 E1/0
2 [v2(S2)|X1, Z1].
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In general, we do not have

φ(p2(X2, Z2)) = µ1/02 (X2) + δ2 E1/0
3 [v3(S3)|X2, Z2],

ψ(p2(X2, Z2)) = v2(X2, Z2)− µ02(X2)− δ2 E0
3[v3(S3)|X2, Z2],

because the state transition matrices F 0
3 and F 1

3 are unknown given only data (D1, S1,

D2, S2). However, if one assumes that the state transition matrices are time invariant
as we did in section 3, we can use the above two equations.

We first focus on the identification with known discount factors. Let

v̄t+1(St+1) ≡ δtvt+1(St+1)

be the discounted ex ante value function. For each period t = 2, . . . , T − 1, we can
solve the unknowns (µ1/0t−1, µ

1/0
t , µ0t , vt, vt+1) from the following part of equation (4.9),

φ(pt−1(Xt−1, Zt−1)) = µ1/0t−1(Xt−1) + δt−1 E1/0
t [vt(St)|Xt−1, Zt−1],

φ(pt(Xt, Zt)) = µ1/0t (Xt) + E1/0
t+1[v̄t+1(St+1)|Xt, Zt],

ψ(pt(Xt, Zt)) = vt(Xt, Zt)− µ0t (Xt)− E0
t+1[v̄t+1(St+1)|Xt, Zt].

(4.10)

Ranging period t from 2 to T−1, all unknowns µ1/01 , . . . , µ1/0T−1, µ
0
2, . . . , µ

0
T−1, v2, . . . , vT

will then be solved. Equation (4.10) is very similar to equation (3.13), for which we
have shown the detailed solution steps. To save space, we give only the solutions of
(µ1/0t−1, µ

1/0
t , µ0t ) and leave the solution details in the Supplemental Material. Define

At ≡

MF 1/0
t 0

0 MF 1/0
t+1

M −MF 0
t+1

 and bt ≡

δ
−1
t−1Mφ(pt−1)

Mφ(pt)

Mψ(pt)

 . (4.11)

If rankAt = 2·(ds−1), we have unique solution of µ1/0t , µ0t and µ
1/0
t−1 from equation (4.9)

µ1/0t = W (φ(pt)− F 1/0
t+1A

+
t,lbt), (4.12)

µ1/0t−1 = W (φ(pt−1)− δt−1F 1/0
t A+

t,ubt), (4.13)

µ0t = WL(A+
t,ubt − F 0

t+1A
+
t,lbt − ψ(pt)),

where W ≡ Idx ⊗ (d−1z · 1dz)
ᵀ, A+

t,u and A+
t,l are the ds × [3 · dx · (dz − 1)] matrices

formed by the first and last ds rows of the Moore-Penrose pseudoinverse matrix A+
t

of matrix At, respectively,

25



M ≡ Idx �


1 −1

. . . . . .

1 −1


(dz−1)×dz

and L ≡


0 0 . . . 0

−1 1
... . . .

−1 1


ds×ds

, (4.14)

In Appendix A, we derive the closed-form solution for (µ1/01 , . . . , µ1/0T−1) and (µ02, . . . , µ
0
T−1)

from equation (4.9).

Proposition 1 (Identification with the Exclusion Restriction, known discount factors
and T ≥ 3). In addition to Assumptions 1-4, suppose the Exclusion Restriction holds,
the discount factors are known and T ≥ 3. For t = 2, . . . , T − 1, let the matrix At
be defined by equation (4.11). If rankAt = 2 · (ds − 1), then the per period utility
functions µ1/0t , µ0t and µ1/0t−1 are identified. Define

µ1/01:(T−1) ≡ ((µ1/01 )
ᵀ
, . . . , (µ1/0T−1)

ᵀ
)
ᵀ
, µ02:(T−1) ≡ ((µ02)

ᵀ
, . . . , (µ0T−1)

ᵀ
)
ᵀ
,

φ(p1:(T−1)) ≡ ((φ(p1))
ᵀ, . . . , (φ(pT−1))

ᵀ)
ᵀ
, ψ(p2:(T−1)) ≡ ((ψ(p2))

ᵀ, . . . , (ψ(pT−1))
ᵀ)

ᵀ
.

We have

µ1/01:(T−1) = (IT−1 ⊗W ) [φ(p1:(T−1))− (Λ̃−1 ⊗ Ids)F 1/0
2:T A

+
1:T b1:T ], (4.15)

µ02:(T−1) = [IT−2 ⊗ (WL)][(Λ−1 ⊗ Ids)F̌ 0
3:TA

+
1:T b1:T − ψ(p2:(T−1))]. (4.16)

where Λ ≡ diag
(
δ1,
∏2

r=1 δr, · · · ,
∏T−2

r=1 δr

)
, Λ̃ ≡ diag

(
1, δ1,

∏2
r=1 δr, · · · ,

∏T−2
r=1 δr

)
,

A1:T ≡

[
(IT−1 ⊗M)F 1/0

2:T

(IT−2 ⊗M) F̌ 0
3:T

]
, b1:T ≡

[
(IT−1 ⊗M)(Λ̃⊗ IT−1)φ(p1:(T−1))

(IT−2 ⊗M)(Λ⊗ IT−2)ψ(p2:(T−1))

]
,

F 1/0
2:T ≡


F 1/0
2

F 1/0
3

. . .

F 1/0
T

 , and F̌ 0
3:T ≡


Ids −F 0

3

Ids −F 0
4

. . . . . .

Ids −F 0
T

 .
Proof. See Appendix A.

When the panel data have the number of time periods greater than 4, we can also
identify the discount factors using the strategy of subsection 3.3. From equation (4.12)
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and (4.13), we have two formulas of µ1/0t ,

µ1/0t = W (φ(pt)− F 1/0
t+1A

+
t,lbt),

µ1/0t = W (φ(pt)− δtF 1/0
t+1A

+
t+1,ubt+1),

using data (Dt−1, St−1, . . . , Dt+1, St+1) and (Dt, St, . . . , Dt+2, St+2), respectively. Equal-
izing the above two formulas, we have an equation of the discount factors δt−1 and
δt, which are hidden in bt and bt+1:

WF 1/0
t+1A

+
t,lbt − δtWF 1/0

t+1A
+
t+1,ubt+1 = 0. (4.17)

We derive the explicit solutions of (δt−1, δt) below. Define

bt,u ≡ vec
[
Mφ(pt−1) 0 0

]
and bt,l ≡ vec

[
0 Mφ(pt) Mψ(pt)

]
,

so that bt = δ−1t−1bt,u + bt,l. Let

Ht,l ≡ WF 1/0
t+1A

+
t,l and Ht+1,u ≡ WF 1/0

t+1A
+
t+1,u.

Then equation (4.17) is written as follows,

R̃t

[
δ−1t−1

−δt

]
= (Ht,lbt,l −Ht+1,ubt+1,u),

where

R̃t ≡
[
Ht,lbt,u Ht+1,ubt+1,l

]
. (4.18)

If rank R̃t = 2, we have the unique solution of (δ−1t−1,−δt)
ᵀ

= R̃+
t (Ht,lbt,l−Ht+1,ubt+1,u).

Proposition 2 (Identification of discount factors with the Exclusion Restriction
and T ≥ 4). Suppose the conditions of Proposition 1 hold and T ≥ 4. For each
t = 2, . . . , T −1, if the matrix R̃t defined in equation (4.18) has full rank, the discount
factors δt−1 and δt are identified.

When the agent’s dynamic programming problem is stationary6, and the Exclusion
Restriction holds, equation (ID) becomes{

φ(p(X,Z)) = µ1/0(X) + δ E1/0[v(X ′, Z ′)|X,Z],

ψ(p(X,Z)) = v(X,Z)− µ0(X)− δ E0[v(X ′, Z ′)|X,Z].
(4.19)

The linear system of equations (4.19) has 2ds equations with 2dx + ds unknowns. So
if ds ≥ 2dx, we may be able to identify the structural parameters. In particular,

6By “stationary dynamic programming problem”, we mean that the decision horizon T∗ is infinite,
and the per period utility functions, the discount factors and the state transition distributions are
time invariant.
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when ds = dx · dz, the order condition ds ≥ 2dx would be satisfied as long as dz ≥
2. The identification of the per period utility functions (µ1/0, µ0) will be based on
solving (µ1/0, µ0) explicitly from equation (4.19). The solution details are left in the
Supplemental Material.

Proposition 3 (Identification with the Exclusion Restriction, known discount factors
and stationarity). In addition to Assumptions 1-4, suppose the Exclusion Restriction
holds, the discount factors are known and that the agent’s dynamic programming
problem is stationary. Let the matrix A and the vector b be defined by

A ≡

[
δMF 1/0

M(I − δF 0)

]
and b ≡

[
Mφ(p)

Mψ(p)

]
.

If T ≥ 2 and rankA = ds−1, the per period utility functions µ1/0 and µ0 are identified.
Moreover, we have

µ1/0 = W (φ(p)− δF 1/0A+b),

µ0 = WL[(I − δF 0)A+b− ψ(p)].

In the Supplemental Material, we have two other identification results (Proposition
S.1 and S.2). Proposition S.1 shows that when the excluded variables are time invari-
ant, such as husband’s education level, the per period utility functions are identified
and satisfy the formulas in Proposition 1 if rankAt = 2ds−dz−1 for t = 2, . . . , T −1.
When there are no excluded variables Zt, an alternative way to identify per period
utility functions is to assume that the per period utility functions are time invariant
but the state transition matrices are time varying. Then time itself is an excluded
variable. Proposition S.2 shows that when there are at least 4 sampling periods in
data, the time invariant per period utility function can be identified with explicit
formulas.

Remark 4 (Extension to multinomial choices). Suppose the choice set is { 0, 1, . . . , J }.
By the Hotz-Miller’s inversion formula (Hotz and Miller, 1993), there exists {φj : j =

1, . . . , J } and ψ such that

vjt (St)− v0t (St) = φj(pt(St))

vt(St)− v0t (St) = ψ(pt(St))
,

where pt(St) ≡ (P(Dt = 1|St), . . . ,P(Dt = J|St))ᵀ. Equation (ID) becomes{
φj(pt(St)) = µj

/0
t (St) + δt Ej/0

t+1[vt+1(St+1)|St], t = 1, . . . , T − 1, j = 1, . . . , J,

ψ(pt(St)) = vt(St)− µ0t (St)− δt E0
t+1[vt+1(St+1)|St], t = 2, . . . , T − 1.
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Each alternative j contributes ds ·(T −1) equations (associated with {φj(pt(St)) : t =

1, . . . , T − 1 }); meanwhile the alternative j brings ds · (T − 1) additional unknowns
{µj/0t : t = 1, . . . , T − 1 }. So the degree of underidentification does not change as we
include more alternatives. However, with the Exclusion Restriction, we have{
φj(pt(St)) = µj

/0
t (Xt) + δt Ej/0

t+1[vt+1(St+1)|St], t = 1, . . . , T − 1, j = 1, . . . , J,

ψ(pt(St)) = vt(St)− µ0t (Xt)− δt E0
t+1[vt+1(St+1)|St], t = 2, . . . , T − 1.

Each alternative j still contributes ds·(T−1) new equations; meanwhile the alternative
j brings only dx · (T − 1) additional unknowns {µj/0t : t = 1, . . . , T − 1 }, because µj/0t

is now dx-dimensional vector. So more alternatives provide more information about
the structural parameters. The exact identification results for multinomial choices
are slightly different from the above propositions, but the general idea is similar.

4.3 Extension to DPDC models with fixed effect

We will show that the linear GMM system can be used to identify dynamic discrete
choice models with fixed effect. We focus on the dynamic discrete choice models with
finite horizon T∗. Also, assume that the discount factor δt = δ is time invariant.
An agent now has unobservable fixed effect η. Let Ωt ≡ (St, ηt, ε

0
t , ε

1
t ) be the state

variables at time t. We consider the following per period utility functions

ut(Ωt, Dt) = Dt · (µ1t (St) + η + ε1t ) + (1−Dt) · (µ0t (St) + ε0t ).

So the per period utility difference is µ1/0t (St) + η + ε1t − ε0t , which is additive in η.
We allow η to be correlated with the observable state variables St. The utility shocks
(ε0t , ε

1
t ) still satisfy Assumption 3 and 4. We need the following assumptions.

Assumption 5. (i) For each t, St+1 ⊥⊥ η| (St, Dt).

(ii) For each t, η ⊥⊥ (ε0t , ε
1
t ).

Let vt(St, η) = E(ε0t ,ε
1
t)

[Vt(Ωt)|St, η] be the ex ante value function, and let v1t (St, η)

and v0t (St, η) be the ASVF. Using the feature that the fixed effect η enters in the
utility functions additively, it can be shown by solving the dynamic programming
problem backwardly that vt(St, η), v1t (St, η) and v0t (St, η) are additive in η. Letting

gt(η) =

(
1− δT∗−t

1− δ

)
η,
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we have

vt(St, η) = v∗t (St) + gt(η),

v1t (St, η) = v1∗t (St) + η + (gt(η)− η),

v0t (St, η) = v0∗t (St) + (gt(η)− η),

vd∗t (St) = µdt (St) + δ Ed
t+1[v

∗
t+1(St+1)|St], d = 0, 1,

v∗t (St) = v0∗t (St) +

∫
max(0, v1∗t (St)− v0∗t (St)− ε̃t) dG(ε̃t).

Here v∗t (St), v0∗t (St) and v1∗t (St) are functions of St only. Our goal is to find an equation
that is similar to equation (ID), so we can use the exclusion restriction to identify
the per period utility functions and discount factor. To this end, we need a control
variable Wt such that St ⊥⊥ η|Wt.

Assumption 6. (i) There is a control Wt such that St ⊥⊥ η|Wt and Wt ⊥⊥ ε̃t.
Assume that Wt is uniformly distributed between 0 and 1.

(ii) Letting ξt ≡ ε̃t − η, the distribution function F (ξt) is known and is strictly
increasing.

The uniformly distributed control variable can be motivated by Imbens and Newey
(2009). The known distribution of ξt is a strong assumption, for which we make a
remark at the end.

Given the control variable Wt, we have

pt(St,Wt) = E[Dt|St,Wt]

= E[ε̃t − η ≤ v1∗t (St)− v0∗t (St)|St,Wt]

=

∫ v1∗t (St)−v0∗t (St)

−∞
dF (ξt|Wt). (4.20)

Letting qt(St) = Ew[pt(St,Wt)] =
∫ 1

0
pt(St, w) dw, we have

qt(St) =

∫ v1∗t (St)−v0∗t (St)

−∞
dF (ξt).

Obviously, qt(St) is known from data. Since F (ξt) is known and invertible, letting
ϕ(·) be the inverse of F (ξt), we have

ϕ(qt(St)) = v1∗t (St)− v0∗t (St) (4.21)

= µ1/0t (St) + δ E1/0
t+1[v

∗
t+1(St+1)|St].
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Next, we have

v∗t (St) = v0t (St) +

∫
max(0, v1∗t (St)− v0∗t (St)− ε̃t) dG(ε̃t)

= v0t (St) +

∫
max(0, ϕ(qt(St))− ε̃t) dG(ε̃t)

≡ v0t (St) + κ(qt(St)),

where κ(qt(st)) is defined by the equation. The functional form of κ(·) depends on
the known distribution functions G(ε̃t) and F (ξt). In summary, we have the following
two equations for each period t:

ϕ(qt(St)) = µ1/0t (St) + δ E1/0
t+1[v

∗
t+1(St+1)|St],

κ(qt(St)) = v∗t (St)− µ0t (St)− δ E0
t+1[v

∗
t+1(St+1)|St],

which has the same structure like equation (ID). So the previous arguments can be
applied to identify µ1/0t (St), µ0t (St), δ and v∗t (St).

Remark 5. If we observe the choice in the terminal period T∗, and assume µ1/0T∗
(ST∗) =

Sᵀ
T∗
αT∗ , we then can identify the distribution function F (ξt) by using the approach in

Blundell and Powell (2004). In the terminal period, v1∗T∗(ST∗)−v0∗T∗(ST∗) = µ1/0T∗
(ST∗) =

Sᵀ
T∗
αT∗ . For each pair of (sT∗ , s

′
T∗) such that qT∗(sT∗) = qT∗(s′T∗), we have(
sT∗ − s′T∗

)ᵀ
αT∗ = 0.

If we have enough number of such pairs, we can identify αT∗, hence the distribution
function F (ξt).

Remark 6. If the vector of state variables St contains a continuous variable S1t, with
which pt(St,Wt) and qt(St) are differentiable, the conditional distribution function
F (η|Wt) is identifiable. Suppose F (ξt|Wt) has density function f(ξt|Wt), it follows
from equation (4.20) and (4.21) that

pt(St,Wt) =

∫ ϕ(qt(St))

−∞
f(ξ|Wt) dξ.

We then have

f (ξ = ϕ (qt(St))|Wt) =
∂pt(St,Wt)/∂S1t

∂ϕ (qt (St)) /∂S1t

.

If the range of ϕ(qt(St)) covers the support of ξ, f(ξ|Wt) is identified. Because
ξt = ε̃t− η, ε̃t ⊥⊥ η, and the distribution function of ε̃t is known, we identify f(η|Wt).
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5 Estimation

All identification results in the previous section are constructive and follow from
the linear system of equations (ID). The solution of the linear system has a closed
form. Therefore, it is natural to estimate these identified structural parameters by
replacing population parameters by sample estimates of the closed form solutions.
The estimation proceeds in two steps. In the first step, we estimate the CCP {pt(St) :

t = 1, . . . , T − 1} and the transition matrix {F d
t+1 : t = 1, . . . , T − 1, d = 0, 1}. Let

p̂t(St) and F̂ d
t+1 be the estimates of the CCP pt(St) and transition matrix F d

t+1 for
each alternative d and each period t. For small state space S, the estimator of the
CCP pt(St) is simply the proportion of Dt = 1 in data for each St. When the support
of St is large, a kernel estimator of pt(St) = E(Dt|St) might be preferable. Similarly,
for small state space S, an estimator of F d

t+1 is simply the empirical frequency table
of the transitions from St to St+1 given Dt = d. When the support of St is large, a
smoothed approach may be preferable to avoid the issue of empty cells; see Aitchison
and Aitken (1976). The second step is to estimate the structural parameters using
the closed form solutions of the linear system under different identifying restrictions.

We focus on the case with the Exclusion Restriction and known discount factors
(Proposition 1). Moreover, assume that the transition matrices are also known.

5.1 Estimation of stationary DPDC models

For a stationary DPDC model with known discount factor and state transition matri-
ces, we need only cross-sectional data to estimate the per period utility functions µ1/0

and µ0. Let { di, si : i = 1, . . . , n } be n agents’ discrete choices and the corresponding
states. For stationary DPDC models, it follows from Proposition 3 that

µ1/0 = W (φ(p)− δF 1/0A+b),

µ0 = WL[(I − δF 0)A+b− ψ(p)].

Let p̂ be the estimator of the CCP p = (p(s1), . . . , p(sds))
ᵀ, and let

√
n(p̂− p)→d N (0, Π).

We then have the estimators µ̂1/0 and µ̂0 :

µ̂1/0 = W (φ(p̂)− δF 1/0A+b̂), (5.1)

µ̂0 = WL[(I − δF 0)A+b̂− ψ(p̂)], (5.2)
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where

b̂ =

[
Mφ(p̂)

Mψ(p̂)

]
.

It is easy to verify that
√
n(µ̂1/0 − µ1/0)→d N (0, (G1/0)Π(G1/0)

ᵀ
),

√
n(µ̂0 − µ0)→d N (0, (G0)Π(G0)

ᵀ
).

Here G1/0 and G0 are the gradient of µ1/0 and µ0 with respect to p, respectively:

G1/0 ≡ ∂µ1/0

∂p
G0 ≡ ∂µ0

∂p

= W∇φ(p)−WF 1/0A+∇b, = WL(I − δF 0)A+∇b−WL∇ψ(p),

where

∇φ(p) ≡ diag

(
∂φ(p(s1))

∂p(s1)
, · · · , ∂φ(p(sds))

∂p(sds)

)
,

∇ψ(p) ≡ diag

(
∂ψ(p(s1))

∂p(s1)
, · · · , ∂ψ(p(sds))

∂p(sds)

)
,

∇b ≡

[
M∇φ(p)

M∇ψ(p)

]
.

Though parametric specification of the per period utility functions is not neces-
sary for our estimator, it is easy to incorporate the parametric specification into our
estimators. Suppose each state xi corresponds to a vector x̃i and

µ1/0(xi) = x̃ᵀiα and µ0(xi) = x̃ᵀi β.

Then

µ1/0 =


x̃ᵀ1α
...

x̃ᵀdxα

 = X̃α and µ0 =


x̃ᵀ1β
...

x̃ᵀdxβ

 = X̃β.

In the numerical example of section 6, x̃i ≡ (1, xi, x
2
i )

ᵀ and µ1/0(xi) = α1+α2xi+α3x
2
i .

Given the estimators µ̂1/0 and µ̂0 in equation (5.1) and (5.2), respectively, we can
estimate α and β by

α̂ = (X̃ᵀX̃)
−1
X̃ᵀµ̂1/0 and β̂ = (X̃ᵀX̃)

−1
X̃ᵀµ̂0, (5.3)

33



and
√
n(α̂− α)→d N

(
0, (X̃ᵀX̃)

−1
X̃ᵀ(G1/0)Π(G1/0)

ᵀ
X̃(X̃ᵀX̃)

−1
)
,

√
n(β̂ − β)→d N

(
0, (X̃ᵀX̃)

−1
X̃ᵀ(G0)Π(G0)

ᵀ
X̃(X̃ᵀX̃)

−1
)
.

5.2 Estimation of nonstationary DPDC models

When the DPDC model is not stationary, we need at least two periods data when the
discount factor and state transition matrices are known. Let { dit, sit : i = 1, . . . , n, t =

1, . . . , T } be n agents’ discrete choices and the corresponding states over the T sam-
pling periods. The estimation will be based on the formulas in Proposition 1. For
any t < s, let pᵀt:s ≡ (pᵀt , . . . , p

ᵀ
s), and let let p̂t:s be its estimator.

We have the following estimator the per period utility functions:

µ̂1/01:(T−1) = (IT−1 ⊗W )
(
φ(p̂1:(T−1))− (Λ̃−1 ⊗ Ids)F 1/0

2:T A
+
1:T b̂1:T

)
, (5.4)

µ̂02:(T−1) = [IT−2 ⊗ (WL)]
(

(Λ−1 ⊗ Ids)F̌ 0
3:TA

+
1:T b̂1:T − ψ(p̂2:(T−1))

)
. (5.5)

where

b̂1:T ≡

[
(IT−1 ⊗M)(IT−1 ⊗ Λ̃)φ(p̂1:(T−1))

(IT−2 ⊗M)(IT−2 ⊗ Λ)ψ(p̂2:(T−1))

]
.

Given
√
n
(
p̂1:(T−1) − p1:(T−1)

)
→d N (0, Π).

we have
√
n
(
µ̂1/01:(T−1) − µ

1/0
1:(T−1)

)
→d N (0, (G1/0

1:T )Π(G1/0
1:T )

ᵀ
),

√
n
(
µ̂02:(T−1) − µ2:(T−1)

)
→d N (0, (G0

1:T )Π(G0
1:T )

ᵀ
).
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Here

G1/0
1:T ≡

∂µ1/01:(T−1)

∂p1:(T−1)

= (IT−1 ⊗W )
(

diag (∇φ(p1), . . . ,∇φ(pT−1))− (Λ̃−1 ⊗ Ids)F 1/0
2:T A

+
1:T∇b1:T

)
,

G0
1:T ≡

∂µ02:(T−1)
∂p1:(T−1)

= [IT−2 ⊗ (WL)]

(Λ−1 ⊗ Ids)F̌ 0
3:TA

+
1:T∇b1:T −


0 ∇ψ(p2)
... . . .

0 ∇ψ(pT−1)


 ,

∇b1:T =



(IT−1 ⊗M)(Λ̃⊗ IT−1) diag (∇φ(p1), . . . ,∇φ(pT−1))

(IT−2 ⊗M)(Λ⊗ IT−2)


0 ∇ψ(p2)
... . . .

0 ∇ψ(pT−1)




.

When there is parametric specification of the per period utility functions, we esti-
mate the unknown parameters involved in the specification by the minimum distance
principle. In particular, suppose each state xi corresponds to a vector x̃i, and suppose

µ1/0t (xi) = x̃ᵀiαt and µ0t (xi) = x̃ᵀi βt,

and then

µ1/0t =


x̃ᵀ1α
...

x̃ᵀdxα

 = X̃αt and µ0t =


x̃ᵀ1β
...

x̃ᵀdxβ

 = X̃βt.

We then have following estimators of αᵀ
1:(T−1) ≡ (αᵀ

1, . . . , α
ᵀ
T−1) and β

ᵀ
2:(T−1) ≡ (βᵀ

2 , . . . ,

βᵀ
T−1):

α̂1:(T−1) = IT−1 ⊗ (X̃ᵀX̃)
−1
X̃ᵀµ̂1/01:(T−1), (5.6)

β̂2:T = IT−2 ⊗ (X̃ᵀX̃)
−1
X̃ᵀµ̂02:(T−1), (5.7)
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whose asymptotic variances are

Var(α̂1:(T−1)) =
[
IT−1 ⊗ (X̃ᵀX̃)

−1
X̃ᵀ
]
G1/0

1:TΠ(G1/0
1:T )

ᵀ
[
IT−1 ⊗ X̃(X̃ᵀX̃)

−1
]
,

Var(β̂2:(T−1)) =
[
IT−2 ⊗ (X̃ᵀX̃)

−1
X̃ᵀ
]
G0

1:TΠ(G0
1:T )

ᵀ
[
IT−2 ⊗ X̃(X̃ᵀX̃)

−1
]
.

6 Numerical studies

In the numerical experiments below, we consider a stationary dynamic programming
discrete choice model with a single Xt and a single excluded variable Zt. In the
Supplemental Material, we report the numerical studies for nonstationary models.

The support X ≡ { x1, . . . xdx } of Xt are the dx = 40 cutting points that split
the interval [0, 2] into dx − 1 equally spaced subintervals. The support of Zt is Z ≡
{ 1, . . . , dz = 3 }. Let the state space S ≡ X × Z and ds = dx · dz. The observable
states St = (Xt, Zt) follows a homogenous controlled first-order Markov chain. For
d ∈ { 0, 1 }, let F d be the time invariant ds × ds transition matrix describing the
transition probability law from St to St+1 given the discrete choice Dt = d. The
transition matrix F d is randomly generated subjecting to the sparsity restriction that
there are at most ms = 5 number of states that can be reached in the next period.
In the experiments below, let the discount factor δ = 0.8. The per period utility
functions are

µ1(X) = 1 +X −X2/2 and µ0(X) = X.

The unobserved utilities shocks ε0 and ε1 are independent and follow the type 1
EVD. In the estimation below, we assume both the state transition matrices and the
discount factor are known.

We compare our closed-form estimator with the three well known parametric es-
timators in the literature, including the nested fixed point (NFXP) algorithm (Rust,
1987), the pseudo-maximum likelihood (PML) estimator and the nested pseudo-
likelihood (NPL) algorithm (Aguirregabiria and Mira, 2002). To implement their
methods, we assume the parametric specification of the per period utility functions

µ1/0(Xt) = α1 + α2Xt + α3X
2
t and µ0(Xt) = β1 + β2Xt + β3X

2
t . (6.1)

So the true values are (α1, α2, α3) = (1, 0,−1/2) and (β1, β2, β3) = (0, 1, 0). We
describe the implementation of these three estimators without using normalization
assumption in the Supplemental Material.

Figure 6.1 shows the 95% confidence interval of the per period utility functions
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Figure 6.1: Estimation of Per Period Utilities in Stationary DPDC Models

based on our nonparametric closed form estimator, NFXP, PML and NPL. The esti-
mates of the utility functions from NFXP, PML and NPL are based on the estimates
of the parametric utility functions. Since our closed-form estimator does not have
the information about the parametric form of the utility functions, its confidence in-
terval is slightly wider than those of the parametric estimators, but the difference is
marginal.

Using the parametric specification (6.1) and the nonparametric closed form esti-
mates of µ1/0 and µ0, we can estimate the unknown parameters α and β with the
minimum distance estimator formula (5.3). Table 1 reports the estimation perfor-
mance of the NFXP, PML, NPL and our minimum distance estimator. Our estima-
tor (“Closed-Form”) outperforms the other three estimators in terms of mean squared
error (MSE) and computation time. Our estimator is 34, 600 and 850 times faster
than the PML, NPL and NFXP algorithms, respectively. In addition to computation
time, our estimator has smaller variance. In the experiments, we found that NFXP,
PML and NPL are numerically unstable possibly due to the existence of multiple
local maxima in the maximization of log likelihood function. Our estimator does not
suffer from this issue because there is no numerical optimization involved at all.

We now consider the counterfactual intervention in the dynamic discrete choice
model. In particular, we want to know how large would be the bias from using
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Table 1: Estimation of Stationary DPDC Models

α1 = 1 α2 = 0 α3 = −0.5 β1 = 0 β2 = 1 β3 = 0 Time1

NFXP
Bias 0.008 0.003 -0.006 - -0.017 0.014

240Var. 0.044 0.218 0.051 - 0.704 0.152
MSE 0.044 0.218 0.051 - 0.704 0152

PML
Bias 0.008 -0.003 -0.003 - 0.158 -0.070

9.8Var. 0.045 0.231 0.054 - 0.651 0.146
MSE 0.045 0.231 0.054 - 0.676 0.151

NPL
Bias 0.004 0.003 -0.004 - 0.013 -0.003

170Var. 0.045 0.231 0.054 - 0.809 0.186
MSE 0.045 0.231 0.054 - 0.809 0.186

Closed-Form2
Bias 0.103 -0.269 0.128 -0.048 0.172 -0.070

0.28Var. 0.032 0.122 0.029 0.147 0.299 0.059
MSE 0.043 0.194 0.045 0.150 0.328 0.064

Note: The results are based on 10 sets of state transition matrices and 1, 000 replications for
each set. The cross-sectional sample size is 1, 000, and there is one period observation.

1 The computation time is measured in second based on the average of the replications.
2 We first estimate the per period utility functions nonparametrically using the formulas in
equation (5.1) and (5.2). Then we estimate the parameters α and β by the formulas of
equation (5.3).
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normalization µ0(X) = 0, which is wrong in this example since µ0(x) = x. Suppose F̃ 0

and F̃ 1 are counterfactual state transition matrices. Let p̃ be the true counterfactual
CCP of the stationary DPDC model with everything unchanged excepting for that
the state transition matrices are F̃ 0 and F̃ 1. Let p̃nm be the counterfactual CCP under
the normalization assumption µ0(X) = 0. By trying 1, 000 pairs of state transition
matrices (F 0, F 1) and (F̃ 0, F̃ 1), we report the empirical density and CDF of the ratio
p̃(si)/p̃nm(si) in figure 6.2. If the normalization µ0(X) = 0 incurs no bias, the ratio
p̃(si)/p̃nm(si) always equals 1. However, this is not the case based on these two figures
in figure 6.2. We can conclude based on figure 6.2 that the bias in counterfactual CCP
from using normalization is noticeably large.

7 Female labor force participation example

In this empirical example, we studies how does husband’s income growth affect wife’s
labor force participation decisions. In particular, we show how does the normalization
of letting µ0(St) = 0 affect the women’s counterfactual labor force participation prob-
abilities. The data are the British Household Panel Survey (BHPS) from 1991-2009
(Wave 1-18). We use five periods data from wave 1, 5, 9, 13 and 17. So the first
and the last sampling periods correspond to wave 1 and 17, respectively. We choose
married women without college education.

From the BHPS data, we first obtain individuals’ income and working experience
that is measured by their accumulated number of working months in each period.
Then for each period t and each married woman i, we construct three variables xpit

(xpit = k, if woman i’s working experience in period t is between the (k − 1)-th and
k-th quartile), xphit (xphit = k, if woman i’s husband’s working experience in period t
is between the (k − 1)-th and k-th quartile), and yit (yit = k, if woman i’s husband’s
income in period t is between the (k−1)-th and k-th decile). We also observe woman
i’s labor force participation choice Dit. Let sit = (xpit, xphit, yit) be the vector of state
variables, in which xphit (the husband’s working experience) is used as the excluded
variable for identification. Note that sit can take 160 different values.

We let woman i’s per period utility depend on xpit, yit and Dit, but not on xphit.
We do not assign any parametric specification for the per period utility functions.
In the estimation, we let the discount factor be a constant over time, and assume
it is 0.8 corresponding to an annual discount rate of 0.95. The per period utility
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functions are estimated by the estimators in equation (5.4) and (5.5), which needs
the estimation of the CCP and the state transition matrices first. The estimation of
the CCP is based on the kernel estimators with Aitchison and Aitken (1976) discrete
kernel functions. The estimation of the state transition matrices is more complicated.
Without restriction on the conditional distribution f(si,t+1|sit, Dit), there are 1602

number of parameters for each period t = 1, . . . , 4. To circumvent the dimensionality
problem, we assume that

f(si,t+1|sit, Dit) = f(xpi,t+1|xpit, xphit, Dit) · f(xphi,t+1|xphit, yit, Dit)·

f(yi,t+1|xphi,t+1, xphit, yit, Dit).

Still, each component, e.g. f(yi,t+1|xphi,t+1, xphit, yit, Dit), of the above decomposi-
tion involves a large number of parameters. We use the mixture transition dis-
tribution (MTD) models (Nicolau, 2014) in statistics to estimate each component.
Take f(yi,t+1|xphi,t+1, xphit, yit, Dit) for example to explain the MTD model. For j =

1, . . . , 10, define

r(j, xphi,t+1, xphit, yit, Dit) ≡

(1, f(yi,t+1 = j|xphi,t+1, Dit), f(yi,t+1 = j|xphit, Dit), f(yi,t+1 = j|yit, Dit))
ᵀ
.

The MTD model assumes that

f(yi,t+1 = j|xphi,t+1, xphit, yit, Dit) =
Φ
(
r(j, xphi,t+1, xphit, yit, Dit)

ᵀ
γt
)∑10

k=1 Φ
(
r(k, xphi,t+1, xphit, yit, Dit)

ᵀ
γt
) ,

where Φ(·) is the CDF of the standard normal distribution. The unknown param-
eter γt is estimated by the MLE after estimating the conditional probabilities, e.g.
f(yi,t+1|yit, Dit), in r(j, xphi,t+1, xphit, yit, Dit).

We consider the counterfactual change in husbands’ income growth. The condi-
tional probability function f(yi,t+1|xphi,t+1, xphit, yit, Dit) in the MTD model is deter-
mined by the transition probabilities in the vector r(j, xphi,t+1, xphit, yit, Dit) and the co-
efficients γt. Let γ̂t be the estimate of γt, and let f̂(yi,t+1|xphi,t+1, Dit), f̂(yi,t+1|xphit, Dit)

and f̂(yi,t+1|yit, Dit) be the estimates of the conditional probability functions. Our
counterfactual experiment is to define the counterfactual transition probability func-
tion

f̃(yi,t+1|yit, Dit) =


f̂(yi,t+1|yit, Dit), if yi,t+1 < yit,∑10

j=yit
f̂(yi,t+1 = j|yit, Dit), if yi,t+1 = yit,

0, if yi,t+1 > yit,
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Figure 7.1: Counterfactual female labor force participation probabilities

for t = 1, 2, 3, and let f̃(yi,t+1|yit, Dit) = f̂(yi,t+1|yit, Dit) for t = 4. This implies
that husband’s income decile cannot move upward. Then we form the counterfactual
probability f̃(yi,t+1|xphi,t+1, xphit, yit, Dit) by let

r̃(j, xphi,t+1, xphit, yit, Dit) ≡

(1, f̂(yi,t+1 = j|xphi,t+1, Dit), f̂(yi,t+1 = j|xphit, Dit), f̃(yi,t+1 = j|yit, Dit))
ᵀ
,

f̃(yi,t+1 = j|xphi,t+1, xphit, yit, Dit) =
Φ
(
r̃(j, xphi,t+1, xphit, yit, Dit)

ᵀ
γ̂t
)∑10

k=1 Φ
(
r̃(k, xphi,t+1, xphit, yit, Dit)

ᵀ
γ̂t
) .

We do not change f(xpi,t+1|xpit, xphit, Dit) or f(xphi,t+1|xphit, yit, Dit) in this experiment.
So the counterfactual state transition law is

f̃(si,t+1|sit, Dit) = f̂(xpi,t+1|xpit, xphit, Dit) · f̂(xphi,t+1|xphit, yit, Dit)·

f̃(yi,t+1|xphi,t+1, xphit, yit, Dit).

We want to know the counterfactual CCP in period 1, 2 and 3 given the above
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counterfactual state transition law. We also estimate the counterfactual CCP under
the normalization assumption such that µ0t = 0 for t = 1, . . . , 5.

Figure 7.1 shows the counterfactual female labor force participation probabilities
in wave 1 with xphit = 3 (i.e. husband’s working experience is between the second
and the third quartile). The results for the other waves and husband’s working
experience are similar and reported in the Supplemental Material. It is interesting
to observe that without normalization, the counterfactual labor force participation
probabilities are lower than the actual ones for the women whose working experience
is below the median. With normalization, however, the counterfactual labor force
participation probabilities seems to be close to the actual ones, suggesting that the
husbands’ income stagnation has no effects on female labor force participation. It is
interesting to note that in real economy, the labor force participation rate decreases
as the earnings grow slowly. The percent changes in average hourly real earnings in
2008 (January) and 2016 (June) are 3.7% and 1.7% in the United States, according
to the Current Employment Statistics; the labor force participation rates in 2008
(January) and 2016 (January) are 66.2% and 62.7% in the United States, according
to the Current Population Survey.

8 Concluding remarks

The identification and estimation of DPDC models are considered to be complicated
and numerically difficult. This paper shows that the identification of DPDC model is
indeed equivalent to the identification of a linear GMM system. So the identification
and estimation of DPDC models become easy to address. We show how to identify
DPDC models under a variety of restrictions. In particular, we show how to identify
the DPDC model without normalizing the per period utility function of any alter-
native. This case is particularly important because the normalization of per period
utility functions can usually bias the counterfactual policy predictions. Due to the
equivalence to a linear GMM system, we can propose a closed form nonparametric
estimator for the per period utility functions without using any terminal conditions
or assuming the dynamic programming problem is stationary. The implementation
of our estimator does not involve any numerical optimization. So it is numerically
stabler and faster than the existing estimators, such as NFXP, PML and NPL.

APPENDIX

42



A Proofs

Lemma A.1. Let A be an m×n real matrix with m ≥ n− 1. Suppose each row of A
sums to be zero and rankA = n−1. Suppose the linear equation Ax = b has solutions.
Then the solution set is {A+b + c × 1n : ∀c ∈ R}, where A+ is the Moore-Penrose
pseudoinverse of A, and 1n is a n-dimensional vector of ones.

Proof. We know that the solution set of equation Ax = b is {A+b + (In − A+A)a :

∀a ∈ Rn}. It suffices to show that (In − A+A) is an n × n matrix, whose elements
are identical.

Let A = UΣV ᵀ be an singular value decomposition (SVD) of matrix A. We know
that A+ = V Σ+Uᵀ, where Σ+ is the pseudoinverse of Σ. Because U and V are
both orthogonal matrices, we have A+A = V Σ+ΣV ᵀ as an eigenvalue decomposition
(EVD). When rankA = n − 1, we have that Σ+Σ is a n × n diagonal matrix, of
which the vector of the main diagonal entries is (1ᵀ

n−1, 0)ᵀ. So the columns of V are
eigenvectors of A+A corresponding to the eigenvalues 1 and 0. Because the sum of
each row of A is zero, 1n is an eigenvector of A+A corresponding to eigenvalue zero,
and n−1/2 · 1n is one column of V . Removing the column n−1/2 · 1n from matrix V ,
we obtain an n× (n− 1) matrix Ṽ and A+A = V Σ+ΣV ᵀ = Ṽ Ṽ ᵀ.

Because V is an orthogonal matrix, we have

I = V V ᵀ =
[
Ṽ n−1/2 × 1n

] [ Ṽ ᵀ

n−1/2 × 1ᵀ
n

]
= Ṽ Ṽ ᵀ + n−1 · 1n1n

ᵀ

= A+A+ n−1 · 1n×n.

Here 1n×n is a n×n matrix whose elements are all 1. So we have I−A+A = n−1 ·1n×n,
and the lemma follows.

Lemma A.2. Let A1 and A2 both be m× n real matrices with m ≥ 2n− 2. Define a
block matrix A ≡

[
A1 A2

]
. For each i = 1, 2, suppose each row of Ai sums to be

zero, and rankA = 2n − 2. Suppose linear equation Ax = b has solutions. Then the
solution set of the equation is {A+b+ (c1 · 1ᵀ

n, c2 · 1ᵀ
n)ᵀ : c1, c2 ∈ R }.

Proof. The proof is similar to the proof of lemma A.1. The solution set of equation
Ax = b is {A+b + (I2n − A+A)a : ∀a ∈ R2n}. Let A = UΣV ᵀ be an SVD of matrix
A. We have A+A = V Σ+ΣV ᵀ as an EVD of A+A. Because rankA = 2n − 2
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and the row sums of each Ai (i = 1, 2) are zero, we have that Σ+Σ is a 2n × 2n

diagonal matrix, of which the vector of the main diagonal entries is (1ᵀ
2n−2, 0, 0)ᵀ. So

V has two columns wᵀ
1 = n−1/2 · (1ᵀ

n, 0
ᵀ
n) and wᵀ

2 = n−1/2 · (0ᵀ
n, 1

ᵀ
n), because they are

two orthonormal eigenvectors corresponding to eigenvalue 0. Removing w1 and w2

from the columns of matrix V , we obtain an 2n× (2n− 2) matrix Ṽ whose columns
are eigenvectors corresponding to the 2n − 2 nonzero eigenvalues. We then have
A+A = V Σ+ΣV ᵀ = Ṽ Ṽ ᵀ.

Because V is an orthogonal matrix, we have

I = V V ᵀ =
[
Ṽ w1 w2

]Ṽ
ᵀ

wᵀ
1

wᵀ
2


= Ṽ Ṽ ᵀ + w1w1

ᵀ + w2w
ᵀ
2

= A+A+

[
1n×n

1n×n

]
.

The rest of the proof follows immediately.

Proof of Proposition 1. Equation (4.9) is equivalent to the following,

µ1/01 ⊗ 1dz + F 1/0
2 (δ1 · v2) = φ(p1),(

t−1∏
r=1

δr

)
· µ1/0t ⊗ 1dz +

(
t∏

r=1

δr

)
· F 1/0

t+1vt+1 =

(
t−1∏
r=1

δr

)
· φ(pt),(

t−1∏
r=1

δr

)
· vt −

(
t−1∏
r=1

δr

)
· µ0t ⊗ 1dz −

(
t∏

r=1

δr

)
· F 0

t+1vt+1 =

(
t−1∏
r=1

δr

)
· ψ(pt),

(A.1)

for t = 2, . . . , T − 1. In the remainder of the proof, we derive the explicit solutions of
µ1/0t and µ0t .

Multiplying both sides of the equations in (A.1) with the M matrix defined by
(4.14), we have

A1:T


δ1 · v2

(
∏2

r=1 δr) · v3
...

(
∏T−1

r=1 δr) · vT

 = b1:T , (A.2)

where A1:T and b1:T are as defined in the proposition. Note that A+
1:T b1:T is one

solution of equation (A.2).
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It follows from equation (A.1) that
µ1/01 ⊗ 1dz

(
∏1

r=1 δr) · µ
1/0
2 ⊗ 1dz

...
(
∏T−2

r=1 δr) · µ
1/0
T−1 ⊗ 1dz

 = (Λ̃⊗Ids)


φ(p1)

φ(p2)
...

φ(pT−1)

−F 1/0
2:T


δ1 · v2

(
∏2

r=1 δr) · v3
...

(
∏T−1

r=1 δr) · vT

 , (A.3)


δ1 · µ02 ⊗ 1dz

...
(
∏T−2

r=1 δr) · µ0T−1 ⊗ 1dz

 = F̌ 0
3:T


δ1 · v2

...
(
∏T−1

r=1 δr) · vT

− (Λ⊗ Ids)


ψ(p2)

...
ψ(pT−1)

 . (A.4)

Substituting (δ1 · v2, . . . , (
∏T−1

r=1 δr) · vT )
ᵀ
in equation (A.3) with A+

1:T b1:T , and multi-
plying both sides of equation (A.3) with Λ̃−1 ⊗ Ids , we have

µ1/01 ⊗ 1dz
...

µ1/0T−1 ⊗ 1dz

 =


φ(p1)
...

φ(pT−1)

− (Λ̃−1 ⊗ Ids)F 1/0
2:T A

+
1:T b1:T . (A.5)

Similar operations for equation (A.4) gives
µ02 ⊗ 1dz

...
µ0T−1 ⊗ 1dz

 = (Λ−1 ⊗ Ids)F̌ 0
3:TA

+
1:T b1:T −


ψ(p2)

...
ψ(pT−1)

 . (A.6)

Multiplying both sides of equation (A.5) (equation (A.6)) with IT−1 ⊗ W (IT−2 ⊗
(WL)), we have formula (4.15) (formula (3.17)) in the proposition. Here we used
(IT−2 ⊗W )(IT−2 ⊗ L) = IT−2 ⊗ (WL).
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