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Abstract

The existing estimation methods of structural dynamic discrete choice models mostly
require knowing or estimating the state transition distributions. When some or all state
variables are continuous and/or the dimension of the vector of state variables is mod-
erately large, the estimation of state transition distributions becomes difficult and has
to rely on tight distributional assumptions. We show that state transition distributions
are indeed not necessary to identify and estimate the flow utility functions in the pres-
ence of panel data and excluded variables. A state variable is called excluded variable
if it does not affect the flow utility but affects the choice probability by affecting the
future payoff of current choice. We propose a new estimator of flow utility functions
without estimating or specifying the state transition law or solving agents’ dynamic
programming problems. The estimator can be applied to both infinite horizon station-
ary model or general dynamic discrete choice models with time varying flow utility
functions and state transition law.
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1 Introduction
We extend the two-step Conditional Choice Probability (CCP) estimator of Hotz and Miller
(1993, HM93 hereafter) to a three-step CCP estimator. We first explain HM93’s two-step
method to make our motivation clear. The CCP is a function of the difference between
expected payoffs from different alternatives. In dynamic programming discrete choice model,
the expected payoff of one alternative equals the sum of the expected flow utility function and
conditional valuation function of that alternative. Both are functions of the current observed
state 𝑠𝑡 and choice 𝑎𝑡. The expected flow utility functions are usually parameterized. The
difficulty is the conditional valuation function, which is the expected remaining lifetime
utility from period 𝑡 onwards given the current state 𝑠𝑡 and choice 𝑎𝑡. The key observation
in HM93 is that under certain conditions the conditional valuation functions are explicit
functions of all future CCP, future expected flow utility functions and future state transition
distributions.1 So the first point is that the CCP in period 𝑡 can be expressed as a function of
all CCP, flow utility functions and state transition distributions beyond period 𝑡. Moreover,
the CCP in period 𝑡 of choosing alternative 𝑎 is also the conditional mean of the dummy
variable that equals 1 when alternative 𝑎 was chosen in period 𝑡 given the observed state
variables. So the second point is that after parameterizing the flow utility functions and
knowing all CCP and state transition distributions, we can set up moment conditions about
the unknown parameters in flow utility functions using the conditional mean interpretation
of the CCP.Based on these two points, the first step of HM93’s two-step estimator is to
estimate the CCP and state transition distributions, nonparametrically. Plugging these
estimates into the moment conditions defined by the CCP formula, the second step is to
estimate the unknown parameters in the flow utility functions via the generalized methods
of moments (GMM) estimator.

The motivation for this paper is that when the dimension of the vector of observable
state variables 𝑠𝑡 is even moderately large, the nonparametric estimation of the state tran-
sition distributions 𝐹(𝑠𝑡+1 | 𝑠𝑡) in the first step of HM93 becomes difficult. The presence of
continuous state variables will only make the task harder. The same difficulty appears in
the other estimators following HM93, including Hotz, Miller, Sanders, and Smith (1994);
Aguirregabiria and Mira (2002); Pesendorfer and Schmidt-Dengler (2008); Arcidiacono and
Miller (2011); Srisuma and Linton (2012); Arcidiacono and Miller (2016), whose implemen-
tation requires the state transition distributions. For large state space, we have to grid the

1Two main conditions for this conclusion are the flow utility functions are additive in the utility shocks,
and the utility shocks are serially uncorrelated. Arcidiacono and Miller (2011) address the serially correlated
unobserved heterogeneity by including finite types in the model.
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state space coarsely, or impose various conditional independence restrictions and paramet-
ric specification of state transition distributions. The aim is to obtain the state transition
distributions somehow.

The main point of this paper is that it is not necessary to estimate the state transition
distributions to estimate the expected flow utility functions by using HM93’s original result
with panel data and excluded variables. A state variable is called excluded variable if it does
not affect flow utility but affect future payoffs. Let 𝑝𝑡(𝑠𝑡) be the vector of CCP in period
𝑡 and 𝑢(𝑎𝑡, 𝑠𝑡; 𝜃𝑡) be the expected flow utility functions known up to a finitely dimensional
𝜃𝑡. HM93 shows that given observed state 𝑠𝑡, the expected optimal flow utility in period
𝑡, denoted by 𝑈𝑜

𝑡 , is an explicit function of CCP and the expected flow utility functions at
time 𝑡. Denote such a function by

𝑈𝑜
𝑡 (𝑝𝑡(𝑠𝑡), 𝑢(𝑎𝑡, 𝑠𝑡; 𝜃𝑡)).

For example, if the utility shocks are independent and follow type-1 extreme value distribu-
tion, it follows from HM93 that

𝑈𝑜
𝑡 = ∑

𝑎∈𝐴
Pr(𝑎𝑡 = 𝑎 | 𝑠𝑡)[𝑢(𝑎𝑡 = 𝑎, 𝑠𝑡; 𝜃𝑡) − ln Pr(𝑎𝑡 = 𝑎 | 𝑠𝑡)] + 0.5776, (1)

where 𝐴 is the choice set. Under the assumptions of HM93, the conditional valuation
function of choosing 𝑎𝑡 at time 𝑡 equals

𝑇∗

∑
𝑟=𝑡+1

𝛽𝑟−𝑡 E(𝑈𝑜
𝑟 (𝑝𝑟(𝑠𝑟), 𝑢(𝑎𝑟, 𝑠𝑟; 𝜃𝑟)) ∣ 𝑠𝑡, 𝑎𝑡), (2)

where 𝛽 is the discount factor, and 𝑇∗ ≤ ∞ is the last decision period. HM93 needs the
state transition distributions to evaluate the conditional expectations from period 𝑡+1 to 𝑇∗.
Hotz, Miller, Sanders, and Smith (1994) needs the state transition distributions to simulate
future states and choices to evaluate these conditional expectations. Our idea is that since
𝑈𝑜

𝑡 can be explicitly written a function of CCP and flow utility functions, e.g. eq. (1),
we might directly estimate the conditional expectation terms in eq. (2) by nonparametric
regressions after estimating CCP and parameterizing flow utility functions if we have panel
data. More concretely, take eq. (1) as an example and assume 𝑠𝑡 is a scalar. Letting
𝑢(𝑎𝑡 = 𝑎, 𝑠𝑡; 𝜃𝑡) = 𝑠𝑡𝜃𝑡(𝑎), to estimate the conditional valuation function of eq. (2), it is
only necessary to estimate the following terms

E(Pr(𝑎𝑟 = 𝑎 | 𝑠𝑟)𝑠𝑟 ∣ 𝑠𝑡, 𝑎𝑡) and E(Pr(𝑎𝑟 = 𝑎 | 𝑠𝑟) ln Pr(𝑎𝑟 = 𝑎 | 𝑠𝑟) ∣ 𝑠𝑡, 𝑎𝑡) (3)

for each period 𝑟 = 𝑡 + 1, … , 𝑇∗. Why would it help? It helps because estimating 𝐹(𝑠𝑡+1|𝑠𝑡)
involves the dimension of 2⋅dim 𝑠𝑡, while the nonparametric regressions, like eq. (3), involves
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the dimension of dim 𝑠𝑡 + 1. In addition, we have abundant resource to deal with the curse-
of-dimensionality in nonparametric regressions.

Careful readers may now raise two questions. First, for the infinite horizon stationary
dynamic programming problem, in which 𝑇∗ = ∞, do we have to estimate infinite number
of nonparametric regressions, which is infeasible given that any practical panel data have
finite sampling periods? Second, for finite horizon problem (𝑇∗ < ∞), do we need panel
data covering agents’ entire decision horizon in order to estimate eq. (3) for each period
𝑟 = 𝑡 + 1, … , 𝑇∗? The answer is “no” to both questions. For infinite horizon stationary
problem, we require the panel data to cover two consecutive decision periods. For finite
horizon problem, we require the panel data to cover four consecutive decision periods. The
two-period requirement for infinite horizon stationary problem is easier to understand. For
an infinite horizon stationary problem, both CCP and state transition distributions are not
time varying. The time invariant CCP can be estimated from single period data, and two
periods data are enough for estimating the state transition distributions. Once time invariant
CCP and state transition distributions are known, in principle it is possible to calculate the
conditional expectations like eq. (3). The four-period requirement for finite horizon problem
is more subtle. In this paper, the identification of the model will be achieved by using the
Exclusion Restriction proposed by Chou (2016). The Exclusion Restriction says that there
are excluded variables that do not affect the immediate payoff of the discrete choice but
affect future payoffs. One useful conclusion of Chou (2016) is that the value function in the
last sampling period of panel data is nonparametrically identified when panel data cover
at least four consecutive decision periods. It is useful because we can write the conditional
valuation function in eq. (2) for finite horizon problem as follows,

𝑇 −1
∑

𝑟=𝑡+1
𝛽𝑟−𝑡 E(𝑈𝑜

𝑟 (𝑝𝑟(𝑠𝑟), 𝑢(𝑎𝑟, 𝑠𝑟; 𝜃𝑟)) ∣ 𝑠𝑡, 𝑎𝑡) + 𝛽𝑇 −𝑡 E( ̄𝑉𝑇 (𝑠𝑇 ) ∣ 𝑠𝑡, 𝑎𝑡),

where 𝑇 is the last decision period in sample, and ̄𝑉𝑇 (𝑠𝑇 ) is the value function in period
𝑇 after integrating out the unobserved utility shocks. The nonparametric regressions in-
volved in the first summation term have no problem. The second term is not a problem
either, because we can express ̄𝑉𝑇 (𝑠𝑇 ) as a series expansion and the series coefficients are
identifiable.

Our three-step extension of HM93 proceeds in the following steps. The first step is to
estimate the CCP nonparametrically. The second step is to estimate the conditional valua-
tion function by nonparametric regressions of generated dependent variables, which are the
terms in the expression of 𝑈𝑜

𝑡 ( ̂𝑝𝑡(𝑠𝑡), 𝑢(𝑎𝑡, 𝑠𝑡; 𝜃𝑡)), on the current state and choice (𝑠𝑡, 𝑎𝑡).
The third step is GMM estimation of 𝜃𝑡 of the flow utility functions. Although the exact
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moment conditions that we used for the third step is different from HM93, the essential
difference between our three-step estimator and the original HM93’s two-step procedure is
that we replace the nonparametric estimation of state transition distributions in HM93 with
the nonparametric regression with generated dependent variables. This can be complemen-
tary to the literature when the dimension of the state variables is large. The additional cost
is that for finite horizon problem, we need excluded variables in order to identify the value
function in the last sampling period. The excluded variable will also be needed to identify
the infinite horizon stationary dynamic programming discrete choice model.2

Since HM93, a series of CCP estimation papers (Altuğ and Miller, 1998; Arcidiacono
and Miller, 2011, 2016) have been using the concept of “finite dependence” to simplify the
CCP estimator. Given “finite dependence” property, such as terminal or renewal action,
the current choice will not alter the distribution of future states after a certain number of
periods. Therefore, the conditional valuation function will depend only on the CCP and
flow utility functions in a small number of periods ahead. This can substantially simplify
the CCP estimation. Such “finite dependence” property can also be used to simplify our
three-step estimation, because we are essentially also estimating the conditional valuation
functions. We are not going to pursue this direction in the present paper.

To derive the asymptotic variance of the proposed estimator, we derive the general
formulas for the asymptotic variance of the three-step semiparametric M-estimators with
generated dependent variables for the nonparametric regressions of the second step. It turns
out that unlike the three-step semiparametric estimators with generated regressors (Hahn
and Ridder, 2013), the sampling error in the first-step estimation will always affect the
influence function of the three-step semiparametric estimators with generated dependent
variables.

The rest is organized as follows. The dynamic discrete choice model is described in sec-
tion 2. Section 3 and section 4 show the three-step estimation of infinite horizon stationary
model and general nonstationary model, resepctively. Section 5 is a numerical study of the
proposed three-step CCP estimator. Section 6 concludes the paper. Some technical details
are included in Appendix A, B, C, and D.

2One way identify the infinite horizon stationary model without using the excluded variable is to impose
the normalization assumption that lets the flow utility function of a reference alternative being zero for all
state values. This normalization will be problematical for doing counterfactual analysis as shown in our
discussions after assumption 4 of our model. Parametric specification of flow utility function might be able
to identify the model in some cases. For example, in the numerical example of Srisuma and Linton (2012),
they estimate an infinite horizon stationary model without using the excluded variables or the normalization.
They did not address the identification issue, though their Monte Carlo experiments suggest the parameters
are identified.
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2 Dynamic Programming Discrete Choice Model
First, we set up the model. Second, we decribe the data required for our estimator. Third,
we briefly discuss the identification and conclude with the moment conditions that are the
basis of our three step estimator.

2.1 The Model

We focus on the binary choice case. For period 𝑡, let Ω𝑡 be the vector of state variables that
could be relevant to the current and future choices or utilities apart from time itself. In
each period 𝑡, an agent makes a binary choice 𝑎𝑡 ∈ 𝐴 ≡ {0, 1} based on Ω𝑡. The choice 𝑎𝑡
affects both the agent’s flow utility in period 𝑡 and the distribution of the next period state
variables Ω𝑡+1. The vector Ω𝑡 is completely observable to the agent in period 𝑡 but partly
observable to econometricians. Let Ω𝑡 ≡ (𝑥𝑡, 𝑧𝑡, 𝜀𝑡). Econometricians only observe 𝑥𝑡 and
𝑧𝑡, and let the vector 𝜀𝑡 denote the unobservable utility shocks. Also denote 𝑠𝑡 ≡ (𝑥𝑡, 𝑧𝑡) the
observable state variables. Assumption 1 assumes that Ω𝑡 is a controlled first-order Markov
process, which is standard in the literature. Assumption 2 has two points: (i) the flow utility
is additive in 𝜀𝑡; (ii) given 𝑥𝑡, 𝑧𝑡 does not affect flow utility (the Exclusion Restriction). The
additivity in utility shocks is usually maintained in the literature with notable exception
of Kristensen, Nesheim, and de Paula (2014). We will use the Exclusion Restriction to
identify the model. The exclusion restriction exists in the applied literature, e.g. Fang and
Wang (2015) and Blundell, Costa Dias, Meghir, and Shaw (2016). We will use the notation
by Aguirregabiria and Mira (2010) in their survey paper as much as possible. The first
difference is that due to the presence of the excluded state variables 𝑧𝑡, we decided to use
Ω𝑡 ≡ (𝑠𝑡, 𝜀𝑡) and 𝑠𝑡 ≡ (𝑥𝑡, 𝑧𝑡) to denote the vector of all state variables and the vector of
observable state variables, respectively.3

Assumption 1. Pr(Ω𝑡+1 |Ω𝑡, 𝑎𝑡,Ω𝑡−1, 𝑎𝑡−1, …) = Pr(Ω𝑡+1 |Ω𝑡, 𝑎𝑡).

Assumption 2. The agent receives flow utility 𝑈𝑡(𝑎𝑡,Ω𝑡) in period 𝑡. Letting 𝜀𝑡 ≡
(𝜀𝑡(0), 𝜀𝑡(1))′, assume

𝑈𝑡(𝑎𝑡,Ω𝑡) = 𝑢𝑡(𝑎𝑡, 𝑥𝑡) + 𝜀𝑡(𝑎𝑡).

The flow utility 𝑢𝑡(𝑎𝑡, 𝑥𝑡) in assumption 2 has a subscript “𝑡”. This is a bit uncommon
in the literature. By adding “𝑡” as a subscript, we allow the flow utility to depend on the
decision period, which is “age” in many applications of labor economics, per se.

3Aguirregabiria and Mira (2010) used 𝑠𝑡 and 𝑥𝑡 to denote the vector of all state variables and the vector
of observable state variables, respectively.
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Let 𝑇∗ ≤ ∞ be the last decision period. In each period 𝑡, the agent makes a sequence of
choices {𝑎𝑡, … , 𝑎𝑇∗

} to maximize the expected discounted remaining lifetime utility,

𝑇∗

∑
𝑟=𝑡

𝛽𝑟−𝑡 E(𝑈𝑟(𝑎𝑟,Ω𝑟) ∣ 𝑎𝑡,Ω𝑡)

where 0 ≤ 𝛽 < 1 is the discount factor.4 The agent’s problem is a Markov decision process,
which can be solved by dynamic programming. Let 𝑉𝑡(Ω𝑡) be the optimal value function,
which solves Bellman’s equation,

𝑉𝑡(Ω𝑡) = max
𝑎∈𝐴

𝑢𝑡(𝑎𝑡 = 𝑎, 𝑥𝑡) + 𝜀𝑡(𝑎) + 𝛽 E(𝑉𝑡+1(Ω𝑡+1) ∣ 𝑠𝑡, 𝜀𝑡, 𝑎𝑡 = 𝑎). (4)

Accordingly, if the agent follows the optimal decision rule, the observed choice 𝑎𝑡 satisfies

𝑎𝑡 = arg max
𝑎∈𝐴

𝑢𝑡(𝑎𝑡 = 𝑎, 𝑥𝑡) + 𝛽 E(𝑉𝑡+1(Ω𝑡+1) ∣ 𝑠𝑡, 𝜀𝑡, 𝑎𝑡 = 𝑎) + 𝜀𝑡(𝑎). (5)

Equation (5) is similar to the data generating process of a static binary choice model with
the exception of the additional term 𝛽 E(𝑉𝑡+1(Ω𝑡+1)|𝑠𝑡, 𝜀𝑡, 𝑎𝑡 = 𝑎) (the conditional valuation
function associated with choosing 𝑎 in period 𝑡 in HM93’s terminology) in the “expected
payoff” of alternative 𝑎. Without further restriction, the conditional valuation function is
non-separable from the unobserved 𝜀𝑡. To avoid dealing with non-separable models, we
make the following assumption, which ensures

E(𝑉𝑡+1(Ω𝑡+1) ∣ 𝑠𝑡, 𝜀𝑡, 𝑎𝑡) = E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡), (6)

where
̄𝑉𝑡+1(𝑠𝑡+1) ≡ E(𝑉𝑡+1(𝑠𝑡+1, 𝜀𝑡+1) ∣ 𝑠𝑡+1). (7)

Assumption 3. (i) 𝑠𝑡+1, 𝜀𝑡+1 ⟂⟂ 𝜀𝑡 | 𝑠𝑡, 𝑎𝑡, (ii) 𝑠𝑡+1 ⟂⟂ 𝜀𝑡+1 | 𝑠𝑡, 𝑎𝑡, and (iii) 𝜀𝑡+1 ⟂⟂ 𝑠𝑡, 𝑎𝑡.

This assumption is also common in the literature. Equation (6) implies that the agent’s
expectation of her optimal future value depends only on the observable states variables 𝑠𝑡
and choice 𝑎𝑡. This could be restrictive in some applications, e.g. it excludes fixed effect that
affects flow utility or state transition or both. In Magnac and Thesmar’s (2002) research
about the identification of the dynamic programming discrete choice model, they show
the identification of flow utility allowing for fixed effect that could affect both flow utility
and state transition. One of their conditions is that the flow utility and the conditional
valuation function of one reference alternative equal to zero. In our notation, taking “0” as

4In general, we can allow for time varying discount factor, 𝛽𝑡, but for the simplicity of exposition, we do
not consider such an extension here.
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the reference alternative, they assume 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) = 0 and E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡 = 0) = 0.
Such a condition turns out to be too restrictive in some applications, as we will discuss more
after assumption 4.

Using the simplification of eq. (6), the observed discrete choice 𝑎𝑡 satisfies

𝑎𝑡 = 1(𝜀𝑡(0) − 𝜀𝑡(1) < 𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡)),

where
𝑣𝑡(𝑎𝑡, 𝑠𝑡) = 𝑢𝑡(𝑎𝑡, 𝑥𝑡) + 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡) (8)

is the choice-specific value function minus the flow utility shock in Aguirregabiria and Mira’s
(2010) terminology. Let ̃𝜀𝑡 ≡ 𝜀𝑡(0)−𝜀𝑡(1) and 𝐺(·|𝑠𝑡) be the cumulative distribution function
(CDF) of ̃𝜀𝑡 given 𝑠𝑡. In terms of 𝐺(· | 𝑠𝑡), the CCP 𝑝𝑡(𝑠𝑡) = Pr(𝑎𝑡 = 1 | 𝑠𝑡) is

𝑝𝑡(𝑠𝑡) = 𝐺(𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) ∣ 𝑠𝑡)

= 𝐺(𝑢𝑡(𝑎𝑡 = 1, 𝑥𝑡) − 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) + 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡 = 1) − 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡 = 0) ∣ 𝑠𝑡).
(9)

Our analysis will heavily use the notation of flow utility difference and the conditional
expectation difference. Without simple notation, the discussion would be cumbersome as
shown by the above displayed equation. So we define the following new notation

�̃�𝑡(𝑥𝑡) ≡ 𝑢𝑡(𝑎𝑡 = 1, 𝑥𝑡) − 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡)
Ẽ( ̄𝑉𝑡+1(𝑠𝑡+1) | 𝑠𝑡) ≡ E( ̄𝑉𝑡+1(𝑠𝑡+1) | 𝑠𝑡, 𝑎𝑡 = 1) − E( ̄𝑉𝑡+1(𝑠𝑡+1) | 𝑠𝑡, 𝑎𝑡 = 0).

The estimation of 𝑢𝑡(𝑎𝑡, 𝑥𝑡) is equivalent to the estimation of �̃�𝑡(𝑥𝑡) and 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡).
When the CDF 𝐺(· | 𝑠𝑡) is unknown, even the difference 𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡)

cannot be identified in general, let alone the flow utility functions 𝑢𝑡(𝑎𝑡, 𝑥𝑡).5 Suppose that
the CDF 𝐺(· | 𝑠𝑡) is known, the absolute level of 𝑢𝑡(𝑎𝑡, 𝑥𝑡) cannot be identified. Take 𝛽 = 0
for example, for any constant 𝑐 ∈ ℝ,

𝑝𝑡(𝑠𝑡) = 𝐺(𝑢𝑡(𝑎𝑡 = 1, 𝑥𝑡) − 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) | 𝑠𝑡)
= 𝐺([𝑢𝑡(𝑎𝑡 = 1, 𝑥𝑡) + 𝑐] − [𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) + 𝑐] ∣ 𝑠𝑡).

The following assumption is to address these concerns.
5With additional assumptions, the CDF 𝐺(· | 𝑠𝑡) is identifiable as shown by Aguirregabiria (2010, page

205). His arguments are based on the following observation. Besides the presence of the conditional valuation
function 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) |𝑠𝑡, 𝑎𝑡), the CCP formula eq. (9) is similar to the CCP in the binary static discrete
choice model studied by Matzkin (1992), in which the CDF 𝐺(· | 𝑠𝑡) can be nonparametrically identified
with the “special regressors” and the zero-median assumption. In this paper, we focus on the estimation
when 𝐺(· | 𝑠𝑡) is known.
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Assumption 4. (i) Assume 𝑠𝑡 ⟂⟂ ̃𝜀𝑡, and ̃𝜀𝑡 is a continuous random variable with real
line support. Letting 𝐺(·) be the CDF of ̃𝜀𝑡, assume 𝐺(·) is a known strictly increasing
function, and E(𝜀𝑡(0)) = 0.

(ii) For every period 𝑡, let 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡 = 𝑥∗) = 0 for some 𝑥∗.

The independence assumption 𝑠𝑡 ⟂⟂ ̃𝜀𝑡 is not particularly strong and is commonly main-
tained in the literature given that we have to assume the conditional CDF of ̃𝜀𝑡 given 𝑠𝑡
is known anyway. The normalization in assumption 4.(ii) differs from the commonly used
normalization by letting one flow utility function be zero,

𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡 = 𝑥) = 0, for all 𝑡 and all 𝑥. (10)

The normalization of eq. (10) implies that the flow utility of alternative 0 in each period
does not vary with respect to the values of the state variable 𝑥𝑡, and more importantly with
respect to the distribution of 𝑥𝑡. This has serious consequence. Because the future value of a
current choice is the discounted expected sum of all future optimal flow utilities by following
the optimal strategy, prohibiting 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) from changing with respect to 𝑥𝑡 for each
period 𝑡 is going to greatly restrict how the future value of the current choice changes with
respect to the distribution of (𝑥𝑡+1, 𝑥𝑡+2, …) given 𝑥𝑡 and 𝑎𝑡. When the counterfactual
policy is to change the state transition distributions, it is known that the normalization of
eq. (10) is not innocuous, but the normalization of assumption 4.(ii) is mostly harmless for
making the counterfactual policy predictions (Norets and Tang, 2014; Kalouptsidi, Scott,
and Souza-Rodrigues, 2015; Chou, 2016). With the Exclusion Restriction, Chou (2016)
shows that the flow utility functions are nonparametrically identifiable without imposing
the “strong” normalization of eq. (10).

2.2 Data and Structural Parameters

There are 𝑛 agents in data. For each agent 𝑖 = 1, … , 𝑛, we observe her decisions 𝑎𝑖𝑡
and observable state variables 𝑠𝑖𝑡 from decision period 1 to 𝑇 ≤ 𝑇∗. Taking the female
labor force participation model as an example, the decision period is “age”, and 𝑎𝑖𝑡 is of
course whether or not woman 𝑖 is on the labor market at the age of 𝑡. In the female labor
supply study (e.g. Eckstein and Wolpin, 1989; Altuğ and Miller, 1998; Blundell, Costa Dias,
Meghir, and Shaw, 2016), some common state variables in 𝑠𝑖𝑡 include woman 𝑖’s education,
accumulated assets, working experience, her family background, her partner’s wage (which
would zero if she is single), education and working experience, and the number of dependent
children in the household. The point is 𝑠𝑖𝑡 usually has a large dimension and includes both
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continuous (partner’s wage) and discrete variables (education). These features make the
direct estimation of the state transition distribution hard. It should be remarked that the
first decision period 1 in sample does not need to be the initial period of her dynamic
programming problem, nor does the last period 𝑇 in sample correspond to the terminal
decision period 𝑇∗.

The structural parameters of this model include the flow utility functions 𝑢𝑡(𝑎𝑡, 𝑥𝑡),
discount factor 𝛽 and state transition distributions 𝐹𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) in each period 𝑡. The
state transition distributions are identified from data. By adding time subscript in the state
transition distributions, we allow the distribution vary across decision periods. This can be
useful in applications because for example data show that mean earnings are hump shaped
over the working lifetime (see e.g. Heckman, Lochner, and Todd, 2003; Huggett, Ventura,
and Yaron, 2011; Blundell, Costa Dias, Meghir, and Shaw, 2016).

2.3 Identification from Linear Moment Conditions

The identification of the structural parameters (excepting for the state transition distribu-
tions, which are directly identified from data) is based on the following equations,

𝜑(𝑝𝑡(𝑠𝑡)) = 𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) = �̃�𝑡(𝑥𝑡) + 𝛽 Ẽ( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡), (11a)

𝜓(𝑝𝑡(𝑠𝑡)) = ̄𝑉𝑡(𝑠𝑡) − 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) − 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡 = 0), (11b)

for every period 𝑡 in data. Our estimator will be based on an alternative expression of
the above equations, which is eq. (14) at the end of this section. Here 𝜑(𝑝) and 𝜓(𝑝) are
constructed from 𝐺(·), the known strictly increasing CDF of ̃𝜀𝑡 = 𝜀𝑡(0) − 𝜀𝑡(1):

𝜑(𝑝) ≡ 𝐺−1(𝑝) (12)

𝜓(𝑝) ≡ ∫ max[0, 𝐺−1(𝑝) − 𝑡] d 𝐺(𝑡),

for 𝑝 ∈ [0, 1]. Clearly, 𝜑(𝑝) is the quantile function. If we substitute 𝑝 in the definition of
𝜓(𝑝) with the CCP 𝑝𝑡(𝑠𝑡), 𝜓(𝑝𝑡(𝑠𝑡)) viewed as a function of 𝑠𝑡 is the so called McFadden’s
social surplus function, that is the expected life-time utility following the optimal policy
minus the expected life-time utility of choosing alternative zero in period 𝑡 and following
the optimal policy thereafter. The fact that the social surplus function depends only on
the CCP is known in the literature (see e.g. page 501–502 of HM93 and Proposition 2 of
Aguirregabiria, 2010).

Equation (11a) follows from inverting the CDF 𝐺(·) in eq. (9) and the definition of 𝜑(𝑝)
in eq. (12). It is a special case of the Hotz and Miller’s inversion result (HM93, Proposition
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1), which establishes the invertibility for multinomial discrete choice. Though not explicitly
presented in HM93, eq. (11b) can be derived using the similar arguments of HM93, page
501. It follows from integrating out 𝜀𝑡 from the both sides of Bellman’s eq. (4). First, in
terms of 𝑣𝑡(𝑎𝑡, 𝑠𝑡), eq. (4) is rewritten as follows,

𝑉𝑡(𝑠𝑡, 𝜀𝑡) = max
𝑎∈𝐴

𝑣𝑡(𝑎𝑡 = 𝑎, 𝑠𝑡) + 𝜀𝑡(𝑎).

The integration of 𝜀𝑡 for both sides of the above display gives

̄𝑉𝑡(𝑠𝑡) = ∫ max(𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + 𝜀𝑡(0), 𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) + 𝜀𝑡(1)) d 𝐹(𝜀𝑡(0), 𝜀𝑡(1))

= 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + ∫ max(0, 𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) − ̃𝜀𝑡) d 𝐺( ̃𝜀𝑡).

Here we used eq. (7) and E(𝜀𝑡(0)) = 0 in assumption 4. It then follows from

𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) = 𝐺−1(𝑝𝑡(𝑠𝑡))

that

̄𝑉𝑡(𝑠𝑡) = 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + ∫ max(0, 𝐺−1(𝑝𝑡(𝑠𝑡)) − ̃𝜀) d 𝐺( ̃𝜀)

= 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + 𝜓(𝑝𝑡(𝑠𝑡)).

The above display gives eq. (11b) by substituting 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) with its definition in eq. (8).
In addition, the two functional of CCP, 𝜑(𝑝𝑡(𝑠𝑡)) and 𝜓(𝑝𝑡(𝑠𝑡)), are related. Letting 𝑎𝑜

𝑡 be
the optimal choice at time 𝑡 given 𝑠𝑡, we have

E(𝜀𝑡(𝑎𝑜
𝑡 ) | 𝑠𝑡) = 𝜓(𝑝𝑡(𝑠𝑡)) − 𝑝𝑡(𝑠𝑡)𝜑(𝑝𝑡(𝑠𝑡)). (13)

This can be verified by calculating ̄𝑉𝑡(𝑠𝑡) in the following way,

̄𝑉𝑡(𝑠𝑡) = E(𝑣𝑡(𝑎𝑜
𝑡 , 𝑠𝑡) + 𝜀𝑡(𝑎𝑜

𝑡 ) ∣ 𝑠𝑡)
= 𝑝𝑡(𝑠𝑡)𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) + (1 − 𝑝𝑡(𝑠𝑡))𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + E(𝜀𝑡(𝑎𝑜

𝑡 ) | 𝑠𝑡)
= 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + 𝑝𝑡(𝑠𝑡)[𝑣𝑡(𝑎𝑡 = 1, 𝑠𝑡) − 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡)] + E(𝜀𝑡(𝑎𝑜

𝑡 ) | 𝑠𝑡)
= 𝑣𝑡(𝑎𝑡 = 0, 𝑠𝑡) + 𝑝𝑡(𝑠𝑡)𝜑(𝑝𝑡(𝑠𝑡)) + E(𝜀𝑡(𝑎𝑜

𝑡 ) | 𝑠𝑡).

Comparing the above display with eq. (11b), we have eq. (13). In the rest of the paper, we
work with the term 𝜓(𝑝𝑡(𝑠𝑡)) − 𝑝𝑡(𝑠𝑡)𝜑(𝑝𝑡(𝑠𝑡)) as a whole. So we define

𝜂(𝑝(𝑠)) ≡ 𝜓(𝑝(𝑠)) − 𝑝(𝑠)𝜑(𝑝(𝑠)).
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Equation (11) can be viewed as linear moment conditions about the structural parame-
ters. We observe CCP, hence 𝜑(𝑝𝑡(𝑠𝑡)) and 𝜓(𝑝𝑡(𝑠𝑡)), from data. Given the discount factor
𝛽, the observable 𝜑(𝑝𝑡(𝑠𝑡)) and 𝜓(𝑝𝑡(𝑠𝑡)) are linear in the unknown flow utility and value
functions. Given the flow utility and value functions, 𝜑(𝑝𝑡(𝑠𝑡)) and 𝜓(𝑝𝑡(𝑠𝑡)) are linear in
𝛽. Chou (2016) shows that with the Exclusion Restriction and certain rank conditions, we
can nonparametrically identify (i) the value function ̄𝑉𝑡(𝑠𝑡); (ii) the difference between the
flow utility functions �̃�𝑡(𝑥𝑡); (iii) the flow utility function of alternative zero 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡).
Below, we assume that the model is identified and focus on the estimation issue, though
during the presentation of our estimator, you will see at least hints about the identification
in remark 1 and remark 2.

In the rest, we transform eq. (11) to eq. (14), which turns out to be more useful for the
estimation job. Lemma 1 is to get rid of the event 𝑎𝑡 = 0 in the conditional expectation
E( ̄𝑉𝑡+1(𝑠𝑡+1) |𝑠𝑡, 𝑎𝑡 = 0) in eq. (11b), so that the law of iterated expectation arguments, like
E(E(𝑣𝑡+𝑘 | 𝑠𝑡+𝑘−1) ∣ 𝑠𝑡) = E(𝑣𝑡+𝑘 | 𝑠𝑡), can be used.

Lemma 1. We have

E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡 = 0) = E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡) − 𝛽−1𝑝𝑡(𝑠𝑡)[𝜑(𝑝𝑡(𝑠𝑡)) − �̃�𝑡(𝑥𝑡)]

Proof. It follows from the law of total probability that (we suppress 𝑠𝑡+1 in ̄𝑉𝑡+1(𝑠𝑡+1) and
𝑠𝑡 in 𝑝[(𝑠[)𝑡])

E( ̄𝑉𝑡+1 | 𝑠𝑡) = (1 − 𝑝𝑡) E( ̄𝑉𝑡+1 | 𝑠𝑡, 𝑎𝑡 = 0) + 𝑝𝑡 E( ̄𝑉𝑡+1 | 𝑠𝑡, 𝑎𝑡 = 1)
= E( ̄𝑉𝑡+1 | 𝑠𝑡, 𝑎𝑡 = 0) + 𝑝𝑡 Ẽ( ̄𝑉𝑡+1 | 𝑠𝑡).

So we have

E( ̄𝑉𝑡+1 | 𝑠𝑡, 𝑎𝑡 = 0) = E( ̄𝑉𝑡+1 | 𝑠𝑡) − 𝑝𝑡 Ẽ( ̄𝑉𝑡+1 | 𝑠𝑡)
= E( ̄𝑉𝑡+1 | 𝑠𝑡) − 𝛽−1𝑝𝑡[𝜑(𝑝𝑡) − �̃�𝑡(𝑥𝑡)],

where the second line follows from eq. (11b). ■

Using lemma 1, we can rewrite eq. (11b) as follows,

𝜓(𝑝𝑡(𝑠𝑡)) = ̄𝑉𝑡(𝑠𝑡) − 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) − 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡) + 𝑝𝑡(𝑠𝑡)[𝜑(𝑝𝑡(𝑠𝑡)) − �̃�𝑡(𝑥𝑡)],

hence

̄𝑉𝑡(𝑠𝑡) = [𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) + 𝑝𝑡(𝑠𝑡)�̃�𝑡(𝑥𝑡) + 𝜂(𝑝𝑡(𝑠𝑡))] + 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡).
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The term within the bracket is indeed the expected optimal flow utility in period 𝑡,

𝑈𝑜
𝑡 (𝑠𝑡) = E(𝑢𝑡(𝑎𝑜

𝑡 , 𝑥𝑡) + 𝜀𝑡(𝑎𝑜
𝑡 ) | 𝑠𝑡),

because

E(𝑢𝑡(𝑎𝑜
𝑡 , 𝑥𝑡) | 𝑠𝑡) = 𝑝𝑡(𝑠𝑡)𝑢𝑡(𝑎𝑡 = 1, 𝑥𝑡) + (1 − 𝑝𝑡(𝑠𝑡))𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡)

= 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) + 𝑝𝑡(𝑠𝑡)�̃�𝑡(𝑥𝑡),

and eq. (13).
In summary, we have

𝜑(𝑝𝑡(𝑠𝑡)) = �̃�𝑡(𝑥𝑡) + 𝛽 Ẽ( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡) (14a)
̄𝑉𝑡(𝑠𝑡) = 𝑈𝑜

𝑡 (𝑠𝑡) + 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡) (14b)

𝑈𝑜
𝑡 (𝑠𝑡) ≡ 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) + 𝑝𝑡(𝑠𝑡)�̃�𝑡(𝑥𝑡) + 𝜂(𝑝𝑡(𝑠𝑡)), (14c)

for every decision period 𝑡. Below, we show how to estimate 𝑢𝑡(𝑎𝑡, 𝑥𝑡) using these equations.

3 Estimation of Infinite Horizon Stationary Markov De-
cision Processes

We first show our three-step estimator for the infinite horizon stationary dynamic program-
ming discrete choice model, because of its simple structure and importance in the literature.
Since the structural parameters of an infinite horizon stationary model are all time invariant,
we omit 𝑡 from CCP, flow utility and value functions below.

The plan for this section is the following. First, we derive a simpler moment condition
about the flow utility functions from eq. (14). This simpler moment condition, eq. (23),
resembles linear regression, but it has infinite number of unknown conditional expectations
in both dependent and independent variables. Second, we describe our three-step semipara-
metric estimation method assuming that we can estimate the infinite number of unknown
conditional expectations with finite-period panel data. Third, we show how to estimate
the infinite number of conditional expectations with two-period panel data by providing an
estimable approximation formula of all conditional expectations and the order of approx-
imation error. Fourth, we derive the influence function for our three-step semiparametric
estimator.
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3.1 Linear moment equation

Starting with eq. (14b), we have

̄𝑉 (𝑠𝑡) − 𝛽 E( ̄𝑉 (𝑠𝑡+1) ∣ 𝑠𝑡) = 𝑈𝑜(𝑠𝑡). (15)

By the recursive structure of eq. (15), we expect to express ̄𝑉 (𝑠𝑡) in terms of E(𝑈𝑜
𝑟 (𝑠𝑟) ∣ 𝑠𝑡)

with 𝑟 = 𝑡, 𝑡 + 1, … . Lemma 2 verifies our expectation.

Lemma 2. If assumption 1-4 hold, we have ̄𝑉 (𝑠𝑡) = ∑∞
𝑗=0 𝛽𝑗 E(𝑈𝑜

𝑡+𝑗(𝑠𝑡+𝑗) ∣ 𝑠𝑡).

Proof. Let 𝐹(𝑠′ | 𝑠) be the time invariant conditional CDF of 𝑠𝑡+1 given 𝑠𝑡. In the proof, we
consider the case that the conditional CDF 𝐹(𝑠′ | 𝑠) of 𝑠𝑡+1 | 𝑠𝑡 is absolutely continuous for
every 𝑠, and let 𝑓(𝑠′ | 𝑠) be the conditional probability density function (PDF). This does
not lose generality, since one can redefine PDF with respect to other measures depending
on the type of 𝑠𝑡.

Let 𝒱 be a Banach space of ̄𝑉 (𝑠) with norm ‖ ̄𝑉 (𝑠)‖ = sup𝑠∈𝒮| ̄𝑉 (𝑠)|, where 𝒮 is the
domain of the value function. We can define a linear operator 𝐿 such that

[𝐿( ̄𝑉 )](𝑠) = E( ̄𝑉 (𝑠′) | 𝑠) = ∫ ̄𝑉 (𝑠′)𝐹(d 𝑠′ | 𝑠).

The left-hand-side of eq. (15) equals [(𝐼 − 𝛽𝐿)( ̄𝑉 )](𝑠𝑡), where 𝐼 denotes identity operator.
First, we show 𝐼 − 𝛽𝐿 is invertible. Because 𝐿 is a linear integral operator with the

kernel function being the conditional PDF 𝑓(𝑠′ | 𝑠), we know that

‖𝐿‖ = sup
̄𝑉 ∈𝒱,‖ ̄𝑉 ‖=1

∥[𝐿( ̄𝑉 )](𝑠)∥ = sup
̄𝑉 ∈𝒱,‖ ̄𝑉 ‖=1

∥∫ ̄𝑉 (𝑠′)𝑓(𝑠′ | 𝑠) d 𝑠′∥

= sup
𝑠∈𝒮

∫|𝑓(𝑠′ | 𝑠)| d 𝑠′ = sup
𝑠∈𝒮

∫ 𝑓(𝑠′ | 𝑠) d 𝑠′ = 1.

We then know that [𝛽𝐿( ̄𝑉 )](𝑠𝑡) = 𝛽 E( ̄𝑉 (𝑠𝑡+1) | 𝑠𝑡), as a linear operator, has norm 𝛽 < 1.
It then follows from the geometric series theorem for linear operators (e.g. see Helm-
berg, 2008, Theorem 4.23.3) that 𝐼 − 𝛽𝐿 is invertible. Hence, we conclude that ̄𝑉 (𝑠𝑡) =
(𝐼 − 𝛽𝐿)−1𝑈𝑜

𝑡 (𝑠𝑡).
Second, we have (𝐼 − 𝛽𝐿)−1 = ∑∞

𝑗=0 (𝛽𝐿)𝑗 from the geometric series theorem, hence
̄𝑉 (𝑠𝑡) = ∑∞

𝑗=0 𝛽𝑗[𝐿𝑗(𝑈𝑜(𝑠))](𝑠𝑡).
Third, we show that

[𝐿𝑗(𝑈𝑜(𝑠))](𝑠𝑡) = E(𝑈𝑜
𝑡+𝑗(𝑠𝑡+𝑗) | 𝑠𝑡), for 𝑗 = 0, 1, 2, … (16)

by induction. For 𝑗 = 0, because 𝐿0 = 𝐼 and E(𝑈𝑜
𝑡 (𝑠𝑡) | 𝑠𝑡) = 𝑈𝑜

𝑡 (𝑠𝑡), the above display
holds. Suppose the above display holds for 𝑗 = 𝐽 , we need to show that it holds for 𝑗 = 𝐽 +1.
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To see this, we have

[𝐿𝐽+1(𝑈𝑜(𝑠))](𝑠𝑡) = [𝐿(𝐿𝐽(𝑈𝑜(𝑠)))](𝑠𝑡)

= ∫ 𝐿𝐽(𝑈𝑜(𝑠))(𝑠𝑡+1)𝑓(𝑠𝑡+1 | 𝑠𝑡) d 𝑠𝑡

= ∫ ∫ 𝑈𝑜
𝑡+1+𝐽(𝑠𝑡+1+𝐽)𝑓(𝑠𝑡+1+𝐽 | 𝑠𝑡+1) d 𝑠𝑡+1+𝐽𝑓(𝑠𝑡+1 | 𝑠𝑡) d 𝑠𝑡. (17)

The last line used [𝐿𝐽(𝑈𝑜(𝑠))](𝑠𝑡+1) = E(𝑈𝑜
𝑡+1+𝐽(𝑠𝑡+1+𝐽) | 𝑠𝑡+1). By the Markov property,

we have 𝑓(𝑠𝑡+1+𝐽 | 𝑠𝑡+1) = 𝑓(𝑠𝑡+1+𝐽 | 𝑠𝑡+1, 𝑠𝑡), hence

𝑓(𝑠𝑡+1+𝐽 | 𝑠𝑡+1)𝑓(𝑠𝑡+1 | 𝑠𝑡) = 𝑓(𝑠𝑡+1+𝐽 , 𝑠𝑡+1 | 𝑠𝑡).

As a result,

eq. (17) = ∫ ∫ 𝑈𝑜
𝑡+1+𝐽(𝑠𝑡+1+𝐽)𝑓(𝑠𝑡+1+𝐽 , 𝑠𝑡+1 | 𝑠𝑡) d 𝑠𝑡+1+𝐽 d 𝑠𝑡

= E(𝑈𝑜
𝑡+1+𝐽(𝑠𝑡+1+𝐽) | 𝑠𝑡).

By induction, we conclude that eq. (16) is true.
Last, given eq. (16) and ̄𝑉 (𝑠𝑡) = ∑∞

𝑗=0 𝛽𝑗[𝐿𝑗(𝑈𝑜(𝑠))](𝑠𝑡), the statement is proved. ■

Expressing the integrated value function ̄𝑉 (𝑠𝑡) as a sum of discounted expected future
optimal flow utilities given the current state 𝑠𝑡 is not an innovation relative to the literature.
For discrete state space, HM93, Hotz, Miller, Sanders, and Smith (1994) and Miller (1997)
all write the un-discounted conditional valuation function E( ̄𝑉 (𝑠𝑡+1) ∣ 𝑠𝑡, 𝑎𝑡 = 𝑎) as

∞
∑
𝑗=1

𝛽𝑗 E(𝑈𝑜(𝑠𝑡+𝑗) ∣ 𝑠𝑡, 𝑎𝑡 = 𝑎), (18)

which follows from the expression of ̄𝑉 (𝑠𝑡+1) in our lemma 2. The existing CCP estimators
in discrete state space proceeds by expressing the conditional expectations of eq. (18) as
the product the state transition probability matrices and the optimal flow utilities in each
state. More concretely, for discrete state space, let 𝐹 denote the state transition probability
matrix from 𝑠𝑡 to 𝑠𝑡+1, which is constant across time for stationary problem. Let 𝐹𝑎 be the
conditional state transition probability matrix from 𝑠𝑡 to 𝑠𝑡+1 given 𝑎𝑡 = 𝑎. And finally let

⃗𝑈𝑜 denote the vector the optimal flow utility in each state of the state space. HM93 and
other CCP estimators estimate eq. (18) by

𝛽𝐹𝑎
∞

∑
𝑗=0

𝛽𝑗𝐹 𝑗 ⃗𝑈𝑜 = 𝛽𝐹𝑎(𝐼 − 𝛽𝐹)−1 ⃗𝑈𝑜.
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For small state space, the estimation of the transition probability matrices is straightforward.
For large state space, the estimation requires various restrictions, which are not always easy
to form and justify. Of course, the above formula breaks when 𝑠𝑡 contains continuous
state variables. Excepting for griding and parametric specification, another remedy for
continuous state variables is to use Srisuma and Linton (2012). Their estimator essentially
views eq. (15) as a Fredholm integral equation of type 2 with unknown kernel 𝐹(𝑠′ | 𝑠),
which was nonparametrically estimated in their paper. Still, their method has to estimate
the state transition probabilities.

The departure from the literature and the innovation is that we will estimate the con-
ditional expectation terms in eq. (18) by nonparametric regressions. Of course, we do not
need to restrict the state space to be discrete. To see why and how we estimate eq. (18)
by nonparametric regressions, we first derive a linear moment condition of the flow utility
functions.

We now derive the linear moment equation eq. (23). Equation (14a) for infinite horizon
stationary problem reads

𝜑(𝑝(𝑠𝑡)) = �̃�(𝑥𝑡) + 𝛽 Ẽ( ̄𝑉 (𝑠𝑡+1) ∣ 𝑠𝑡).

Replacing ̄𝑉 (𝑠𝑡+1) in the above display with its series expression in lemma 2 and applying

E(E(𝑈𝑜
𝑡+𝑗(𝑠𝑡+𝑗) ∣ 𝑠𝑡+1) ∣ 𝑠𝑡) = E(𝑈𝑜

𝑡+𝑗(𝑠𝑡+𝑗) ∣ 𝑠𝑡),

which follows from the Markov property of 𝑠𝑡, we have the moment condition

𝜑(𝑝(𝑠𝑡)) = �̃�(𝑥𝑡) +
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑈𝑜
𝑡+𝑗(𝑠𝑡+𝑗) ∣ 𝑠𝑡), (19)

where
𝑈𝑜

𝑡 (𝑠𝑡) = 𝑢(𝑎𝑡 = 0, 𝑥𝑡) + 𝑝(𝑠𝑡)�̃�(𝑥𝑡) + 𝜂(𝑝(𝑠𝑡)).

For notational simplicity, let

�̃�(𝑥𝑡) = 𝑥′
𝑡𝛿 and 𝑢(𝑎𝑡 = 0, 𝑥𝑡) = 𝑥′

𝑡𝛼. (20)

The flow utility functions can also be nonparametrically estimated if we write �̃�(𝑥𝑡) and
𝑢(𝑎𝑡 = 0, 𝑥𝑡) as series expansion. We are interested in estimating 𝜃 ≡ (𝛿′, 𝛼′)′.

It follows from eq. (20) that eq. (19) becomes

𝜑(𝑝(𝑠𝑡)) = 𝑥′
𝑡𝛿 −

∞
∑
𝑗=1

𝛽𝑗ℎ1𝑗(𝑠𝑡) +
∞

∑
𝑗=1

𝛽𝑗ℎ2𝑗(𝑠𝑡)′𝛼 +
∞

∑
𝑗=1

𝛽𝑗ℎ3𝑗(𝑠𝑡)′𝛿, (21)
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where

ℎ1𝑗(𝑠𝑡) ≡ Ẽ(𝜂(𝑝(𝑠𝑡+𝑗)) | 𝑠𝑡), ℎ2𝑗(𝑠𝑡) ≡ Ẽ(𝑥𝑡+𝑗 | 𝑠𝑡), ℎ3𝑗(𝑠𝑡) ≡ Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑠𝑡).

Suppose we have data (𝑎𝑖𝑡, 𝑥′
𝑖𝑡, 𝑧′

𝑖𝑡) for 𝑖 = 1, … , 𝑛, 𝑡 = 1, … , 𝑇 ≥ 2 and a known discount
factor 𝛽. For 𝑖 = 1, … , 𝑛, letting

𝑦𝑖𝑡 ≡ 𝜑(𝑝(𝑠𝑖𝑡)) +
∞

∑
𝑗=1

𝛽𝑗ℎ1𝑗(𝑠𝑖𝑡), (22a)

𝑟′
𝑖𝑡 ≡ (𝑥′

𝑖𝑡 +
∞

∑
𝑗=1

𝛽𝑗ℎ3𝑗(𝑠𝑖𝑡)′,
∞

∑
𝑗=1

𝛽𝑗ℎ2𝑗(𝑠𝑖𝑡)′), (22b)

eq. (21) is written as the following linear equation of 𝜃,

𝑦𝑖𝑡 = 𝑟′
𝑖𝑡𝜃. (23)

Letting 𝑌𝑡 = (𝑦1𝑡, … , 𝑦𝑛𝑡)′, 𝑌 = (𝑌 ′
1 , … , 𝑌 ′

𝑇 )′, 𝑅𝑡 = (𝑟1𝑡, … , 𝑟𝑛𝑡)′, and 𝑅 = (𝑅′
1, … , 𝑅′

𝑇 )′,
we have 𝑌 = 𝑅𝜃, or

𝜃 = (𝑅′𝑅)−1(𝑅′𝑌 ).

3.2 Three-step estimator

The estimation of 𝜃 is to obtain the sample analog of 𝑅 and 𝑌 . First, we approximate 𝑦𝑖𝑡
and 𝑟𝑖𝑡 by truncating the infinite series in eq. (21). We will justify the truncation latter,
but given the presence of the discount factor 𝛽 < 1, it should not be a surprise that we can
truncate the series for estimation. Define

𝑦𝑖𝑡,𝐽 ≡ 𝜑(𝑝(𝑠𝑖𝑡)) +
𝐽

∑
𝑗=1

𝛽𝑗ℎ1𝑗(𝑠𝑖𝑡), (24a)

𝑟′
𝑖𝑡,𝐽 ≡ (𝑥′

𝑖𝑡 +
𝐽

∑
𝑗=1

𝛽𝑗ℎ3𝑗(𝑠𝑖𝑡)′,
𝐽

∑
𝑗=1

𝛽𝑗ℎ2𝑗(𝑠𝑖𝑡)′). (24b)

The notation 𝑌𝑡,𝐽 , 𝑌𝐽 , 𝑅𝑡,𝐽 , and 𝑅𝐽 are then defined similarly from 𝑦𝑖𝑡,𝐽 and 𝑟𝑖𝑡,𝐽 . It
will be helpful to denote ℎ𝐽

𝑘 (𝑠𝑡) ≡ (ℎ𝑘1(𝑠𝑡), … , ℎ𝑘𝐽(𝑠𝑡))′ for 𝑘 = 1, 2, 3 and ℎ𝐽(𝑠𝑡)′ ≡
(ℎ𝐽

1 (𝑠𝑡)′, ℎ𝐽
2 (𝑠𝑡)′, ℎ𝐽

3 (𝑠𝑡)′) for calculating the influence functions latter. Our estimator pro-
ceeds in three steps.

Step 1: Estimate the CCP E(𝑎𝑖𝑡 | 𝑠𝑖𝑡). Let ̂𝑝(𝑠) be the CCP estimator.

Step 2: Estimate 𝜑(𝑝(𝑠)) and ℎ𝑘𝑗(𝑠) for 𝑘 = 1, 2, 3 and 𝑗 = 1, … , 𝐽 . Let 𝜑( ̂𝑝(𝑠)) be the
estimators of 𝜑(𝑝(𝑠)). Taking the estimation of ℎ3𝑗(𝑠) = Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑠𝑡) for
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example, we need to estimate

E(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑠𝑡, 𝑎𝑡 = 𝑎),

for 𝑎 = 0, 1. When 𝑡 + 𝑗 ≤ 𝑇 , these conditional expectations can be estimated by
nonparametric regression of ̂𝑝(𝑠𝑖,𝑡+𝑗)𝑥𝑖,𝑡+𝑗 on 𝑠𝑖𝑡 and 𝑎𝑖𝑡. If 𝑡 + 𝑗 > 𝑇 , we can still
estimate these conditional means by using the stationarity property. We will explain
the estimation of ℎ𝑘𝑗 when 𝑡 + 𝑗 > 𝑇 in detail after completing the procedure. For
𝑘 = 1, 2, 3, let ℎ̂𝑘𝑗(𝑠) be the estimator of ℎ𝑘𝑗(𝑠).

Step 3: Then ̂𝑦𝑖𝑡,𝐽 and ̂𝑟𝑖𝑡,𝐽 , hence ̂𝑌𝐽 and �̂�𝐽 , are constructed by replacing the unknown
𝜑 and ℎ𝑘𝑗 with their respective estimates. We have the estimator

̂𝜃𝐽 = (�̂�′
𝐽�̂�𝐽)−1(�̂�′

𝐽 ̂𝑌𝐽).

We want to emphasize that the implementation of the entire estimation procedure involves
only certain number of nonparametric regressions and one ordinary linear regression. The
number of nonparametric regressions depends on the dimension of 𝑥𝑡 linearly. So we claim
that the numerical implementation is not difficult, and the computation burden grows lin-
early in the dimension of the state variables.

Remark 1 (Role of the excluded variable 𝑧𝑡 with linear flow utility functions). We claimed
that the excluded variable 𝑧𝑡 was required to identify the model. This point can be now
better understood from the linear regression perspective using eq. (23). To identify 𝜃, the
“regressors” in 𝑟𝑡 cannot be perfectly collinear. For simplicity, let 𝑥𝑡 be a scalar. So there
are two regressors in 𝑟𝑡:

𝑥𝑡 +
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡, 𝑧𝑡) and
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑥𝑡+𝑗 | 𝑥𝑡, 𝑧𝑡).

Without excluded variable 𝑧𝑡, these two regressors become

𝑥𝑡 +
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡) and
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑥𝑡+𝑗 | 𝑥𝑡).

The term 𝑥𝑡 is likely to be collinear with Ẽ(𝑥𝑡+𝑗|𝑥𝑡) depending on the conditional distribution
of 𝑥𝑡+𝑗 given 𝑥𝑡 and 𝑎𝑡. Due to the presence of CCP, we cannot tell how much is the
correlation between Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡) and Ẽ(𝑥𝑡+𝑗 | 𝑥𝑡). However, because CCP is smaller
than one and

Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡) = E(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡, 𝑎𝑡 = 1) − E(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡, 𝑎𝑡 = 0),
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we expect that ∑∞
𝑗=1 𝛽𝑗 Ẽ(𝑝(𝑠𝑡+𝑗)𝑥𝑡+𝑗 | 𝑥𝑡) is dominated by 𝑥𝑡. With linear flow utility

specification and without the excluded variable, the conclusion is the two regressors are
going to be highly correlated in some cases making the variance of ̂𝜃𝐽 large. ■

Remark 2 (Role of the excluded variable 𝑧𝑡 with nonparametric flow utility functions). If
we leave the flow utility functions nonparametrically unknown, we can write the original
moment equation eq. (19) as follows,

𝜑(𝑝(𝑠𝑡)) +
∞

∑
𝑗=1

Ẽ(𝜂(𝑝(𝑠𝑡+𝑗)) | 𝑥𝑡) = [�̃�(𝑥𝑡) +
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑝(𝑠𝑡+𝑗)�̃�(𝑥𝑡+𝑗) | 𝑥𝑡)]

+
∞

∑
𝑗=1

𝛽𝑗 Ẽ(𝑢(𝑎𝑡+𝑗 = 0, 𝑥𝑡+𝑗) ∣ 𝑥𝑡).

The left-hand-side of the above display is known from data. However, two terms on the
right-hand-side are both unknown functions of 𝑥𝑡, hence neither �̃�(𝑥𝑡) nor 𝑢(𝑎𝑡 = 0, 𝑥𝑡) is
identifiable. ■

3.3 Estimation of conditional expectations with two-period data

We now explain the estimation of ℎ𝑘𝑗(𝑠) when 𝑡 + 𝑗 > 𝑇 in more detail. In particular, we
consider the most “difficult” case in which 𝑇 = 2. Let 𝑔(𝑠) denote a generic function of 𝑠.
We only need to show the approximation of E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡, 𝑎𝑡 = 𝑎) for all 𝐽 ≥ 1 and 𝑎 ∈ 𝐴.
As a summary for the rest, first, we prove that

E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡) = 𝑞𝐾(𝑠𝑡)′Γ 𝐽𝜌 + error term;

second, we derive the order of the error term; third, we show,

E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡, 𝑎𝑡) = E(E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡+1) | 𝑠𝑡, 𝑎𝑡) = 𝑞𝐾(𝑠𝑡)′Γ (𝑎)Γ𝐽−1𝜌 + error term,

and derive the order of the approximation error. The notation used in the approximation
formulas will be clear soon. The bottom line is the formula can be estimated from two-
period panel data. The proofs of the results are not interesting by themselves, so we left
them into the appendix.

For simplicity, let 𝑠 ∈ [0, 1] and let 𝑔 ∈ 𝐿2(0, 1). Here 𝐿2(0, 1) denotes the set of functions
𝑔 ∶ [0, 1] ↦ ℝ such that ∫1

0 𝑔2(𝑠) d 𝑠 < ∞. In this paper, we let 𝑞1(𝑠), 𝑞2(𝑠), … denote a
sequence of generic approximating functions. Here, we let 𝑞1, 𝑞2, … form an orthonormal
basis of 𝐿2(0, 1). We can always write

𝑔(𝑠) =
∞

∑
𝑗=1

𝜌𝑗𝑞𝑗(𝑠)
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where 𝜌𝑗 = ∫1
0 𝑔(𝑠)𝑞𝑗(𝑠) d 𝑠. Denote

̄𝑞𝑘(𝑠) ≡ E(𝑞𝑘(𝑠𝑡+1) ∣ 𝑠𝑡 = 𝑠) and ̄𝑞𝑘(𝑠, 𝑎) ≡ E(𝑞𝑘(𝑠𝑡+1) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), (25)

for 𝑘 = 1, 2, … . Provided that ̄𝑞𝑘(𝑠), ̄𝑞𝑘(𝑠, 𝑎) ∈ 𝐿2(0, 1) (e.g. assumption 5.(i) and 5.(iii)
give two sufficient conditions), we can also write

̄𝑞𝑘(𝑠) =
∞

∑
𝑗=1

𝛾𝑘,𝑗𝑞𝑗(𝑠) and ̄𝑞𝑘(𝑠, 𝑎) =
∞

∑
𝑗=1

𝛾𝑘,𝑗(𝑎)𝑞𝑗(𝑠),

where 𝛾𝑘,𝑗 = ∫1
0 ̄𝑞𝑘(𝑠)𝑞𝑗(𝑠) d 𝑠, and 𝛾𝑘,𝑗(𝑎) is defined similarly. Let’s truncate all series at

𝐾, and write

𝑔(𝑠) = 𝑞𝐾(𝑠)′𝜌 + 𝜈(𝑠), ̄𝑞𝑘(𝑠) = 𝑞𝐾(𝑠)′𝛾𝑘 + 𝜔𝑘(𝑠), ̄𝑞𝑘(𝑠, 𝑎) = 𝑞𝐾(𝑠)′𝛾𝑘(𝑎) + 𝜔𝑘(𝑠, 𝑎).

Here, 𝑞𝐾 = (𝑞1, … , 𝑞𝐾)′, 𝜌 = (𝜌1, … , 𝜌𝐾)′, 𝜈(𝑠) = ∑∞
𝑗=𝐾+1 𝜌𝑗𝑞𝑗(𝑠), 𝛾𝑘, 𝜔𝑘(𝑠), 𝛾𝑘(𝑎) and

𝜔𝑘(𝑠, 𝑎) are defined similarly. The following notation will be handy latter: let 𝜔𝐾 =
(𝜔1, … , 𝜔𝐾)′, 𝜔𝐾(𝑠, 𝑎) = (𝜔1(𝑠, 𝑎), … , 𝜔𝐾(𝑠, 𝑎))′, Γ = (𝛾1, … , 𝛾𝐾), and Γ (𝑎) = (𝛾1(𝑎), … , 𝛾𝐾(𝑎)).
Note both Γ and Γ (𝑎) are estimable from two-period panel data using nonparametric re-
gression. Depending on how smooth 𝑔(𝑠), ̄𝑞𝑘(𝑠) and ̄𝑞𝑘(𝑠, 𝑎) (for each 𝑎) are, we can bound
the norm of 𝜈(𝑠), 𝜔𝑘(𝑠) and 𝜔𝑘(𝑠, 𝑎).

Assumption 5. (i) Assume ̄𝑞𝑘(𝑠) defined in eq. (25) is monotone is 𝑠, or the state
transition density 𝑓(𝑠𝑡+1 | 𝑠𝑡) is continuous in 𝑠𝑡. Either condition ensures ̄𝑞𝑘(𝑠) ∈
𝐿2(0, 1).

(ii) A Sobolev ellipsoid is a set 𝐵(𝑚, 𝑐) = {𝑏∣∑∞
𝑗=1 𝑎𝑗𝑏2

𝑗 ≤ 𝑐2}, where 𝑎𝑗 ∼ 𝜋𝑗2𝑚 as 𝑗 → ∞.
Assume that the coefficients (𝜌1, 𝜌2, …) and (𝛾𝑘,1, 𝛾𝑘,2, …), for each 𝑘 = 1, 2, … , belong
to the Sobolev ellipsoid 𝐵(𝑚, 𝑐). So we have a bound for ‖𝜈(𝑠)‖2 and ‖𝜔𝑘(𝑠)‖2:

‖𝜈(𝑠)‖2 = 𝑂(𝐾−𝑚) and ‖𝜔𝑘(𝑠)‖2 = 𝑂(𝐾−𝑚).

The bound follows from the definition of 𝜈(𝑠) and 𝜔𝑘(𝑠) and Sobolev ellipsoid. Lemma
8.4 of Wasserman (2006) establishes this bound. Loosely speaking, the value of 𝑚
depends on the order of the differentiability of the function.

(iii) For each 𝑎 ∈ 𝐴, assume ̄𝑞𝑘(𝑠, 𝑎) is monotone is 𝑠, or the state transition density
𝑓(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡 = 𝑎) is continuous in 𝑠𝑡.

(iv) Assume that the coefficients (𝛾𝑘,1(𝑎), 𝛾𝑘,2(𝑎), …), for each 𝑘 = 1, 2, … , belong to the
Sobolev ellipsoid 𝐵(𝑚, 𝑐). So that ‖𝜔𝑘(𝑠, 𝑎)‖2 = 𝑂(𝐾−𝑚) for each 𝑎 ∈ 𝐴.
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Lemma 3. Suppose 𝑠𝑡 is a first-order Markov process, and assumption 5.(i) holds. For any
𝐽 ≥ 1, we have

E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡) = 𝑞𝐾(𝑠𝑡)′Γ 𝐽𝜌 +
𝐽

∑
𝑗=1

E(𝜔𝐾(𝑠𝑡+𝐽−𝑗)′Γ 𝑗−1𝜌 ∣ 𝑠𝑡) + E(𝜈(𝑠𝑡+𝐽) | 𝑠𝑡),

for any 𝑡.

Proposition 1. Suppose 𝑠𝑡 is a first-order Markov process, and assumption 5.(i)-(ii) hold.
For any 𝐽 ≥ 1 (including 𝐽 → ∞),

‖E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡) − 𝑞𝐾(𝑠𝑡)′Γ 𝐽𝜌‖2 = 𝑂(𝐾1/2−𝑚).

Proposition 2. Suppose 𝑠𝑡 is a first-order Markov process, and assumption 5 holds. For
any 𝐽 ≥ 1 (including 𝐽 → ∞),

‖E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡, 𝑎𝑡 = 𝑎) − 𝑞𝐾(𝑠𝑡)′Γ (𝑎)Γ 𝐽−1𝜌‖2 = 𝑂(𝐾1/2−𝑚).

Given proposition 2, a reasonable estimator of E(𝑔(𝑠𝑡+𝐽)|𝑠𝑡, 𝑎𝑡 = 𝑎) is 𝑞𝐾(𝑠𝑡)′Γ̂(𝑎)Γ̂𝐽−1𝜌.
The two matrices Γ̂(𝑎) and Γ̂ are easily obtained from the nonparametric regressions of
𝑞𝑘(𝑠𝑖,𝑡+1) on 𝑠𝑖,𝑡 and (𝑠𝑖,𝑡, 𝑎𝑖,𝑡), respectively, for all 𝑘 = 1, … , 𝐾. The vector ̂𝜌 is obtained
from its definition 𝜌𝑗 = ∫1

0 𝑔(𝑠)𝑞𝑗(𝑠) d 𝑠.

3.4 Influence function for stationary decision process

Letting 𝑁 = 𝑛𝑇 , our goal is to characterize the first-order asymptotic properties of ̂𝜃𝐽 =
(�̂�′

𝐽�̂�𝐽)−1(�̂�′
𝐽 ̂𝑌𝐽) when 𝑛 → ∞ and 𝑇 is fixed by deriving its influence function. The

derivation will mostly use the pathwise derivative approach by Newey (1994a) and Hahn
and Ridder (2013).

Letting 𝑝∗(𝑠𝑡) be the true CCP, denote 𝑦𝑖𝑡∗ and 𝑟𝑖𝑡∗ the 𝑦𝑖𝑡 and 𝑟𝑖𝑡 of eq. (22) evaluated
at the true CCP.The other objects with subscript “∗” are defined in the same fashion. Define

𝜃∗ = (𝑅′
∗𝑅∗)−1𝑅′

∗𝑌∗ = [E(𝑟𝑖𝑡∗𝑟′
𝑖𝑡∗)]−1 E(𝑟𝑖𝑡∗𝑦𝑖𝑡∗), (26)

𝜃𝐽 = (𝑅′
𝐽∗𝑅𝐽∗)−1𝑅′

𝐽∗𝑌𝐽∗,
𝜃𝐽∗ = [E(𝑟𝑖𝑡,𝐽∗𝑟′

𝑖𝑡,𝐽∗)]−1 E(𝑟𝑖𝑡,𝐽∗𝑦𝑖𝑡,𝐽∗).

The identity in eq. (26) follows from 𝑦𝑖𝑡∗ = 𝑟′
𝑖𝑡∗𝜃∗. We decompose

√
𝑁( ̂𝜃𝐽 − 𝜃∗) =

√
𝑁( ̂𝜃𝐽 − 𝜃𝐽∗) +

√
𝑁(𝜃𝐽∗ − 𝜃∗),

and make the following assumption.
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Assumption 6. (i) There exists a constant 𝜁, such that sup𝑠|ℎ𝑘𝑗(𝑠)| < 𝜁 for all 𝑘 = 1, 2, 3
and 𝑗 = 1, 2, … .

(ii) The smallest eigenvalue of E(𝑟𝑖𝑡,𝐽𝑟′
𝑖𝑡,𝐽) is bounded away from zero uniformly in 𝐽 =

1, 2, … .

In the appendix, we show that the bias term
√

𝑁(𝜃𝐽∗−𝜃∗) = 𝑂𝑝(𝛽𝐽+1) (proposition B.2),
so we can focus on the analysis of the variance term

√
𝑁( ̂𝜃𝐽 −𝜃𝐽∗), which can be understood

as a three-step M-estimator with generated dependent variables. Proposition B.2 justifies
the truncation we made earlier. The moment equation is

𝑚(𝑥𝑖𝑡, 𝜃, ℎ𝐽(𝑠𝑖𝑡; 𝑝), 𝑝) = 𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃).

Equation (24) says that 𝑟′
𝑖𝑡,𝐽 = (𝑥′

𝑖𝑡 + ∑𝐽
𝑗=1 𝛽𝑗ℎ3𝑗(𝑠𝑖𝑡)′, ∑𝐽

𝑗=1 𝛽𝑗ℎ2𝑗(𝑠𝑖𝑡)′) is a function of
𝑥𝑖𝑡, ℎ𝐽

2 (𝑠𝑖𝑡) and ℎ𝐽
3 (𝑠𝑖𝑡), and 𝑦𝑖𝑡,𝐽 = 𝜑(𝑝(𝑠𝑖𝑡)) + ∑𝐽

𝑗=1 𝛽𝑗ℎ1𝑗(𝑠𝑖𝑡) is a function of 𝑝(𝑠𝑖𝑡) and
ℎ𝐽

1 (𝑠𝑖𝑡). The vector ℎ𝐽(𝑠𝑡)′ ≡ (ℎ𝐽
1 (𝑠𝑡)′, ℎ𝐽

2 (𝑠𝑡)′, ℎ𝐽
3 (𝑠𝑡)′) itself is a function of 𝑝. So we write

ℎ𝐽(𝑠𝑖𝑡; 𝑝). The estimator ̂𝜃𝐽 solves the moment equation,
𝑛,𝑇
∑
𝑖,𝑡=1

𝑚(𝑥𝑖𝑡, 𝜃, ℎ̂𝐽(𝑠𝑖𝑡; ̂𝑝), ̂𝑝)/𝑁 = 0,

and we have E(𝑚(𝑥𝑖𝑡, 𝜃𝐽∗, ℎ𝐽
∗ (𝑠𝑖𝑡; 𝑝∗), 𝑝∗)) = 0.

It is similar to Hahn and Ridder (2013) that using the pathwise derivative approach in
Newey (1994a), the influence function associated with

√
𝑁( ̂𝜃𝐽 − 𝜃𝐽∗) can be expressed as

a sum of the following terms: (i) the leading term
√

𝑁(𝜃𝐽 − 𝜃𝐽∗), (ii) a term that adjusts
for the sampling variation in the nonparametric regressions for estimating ℎ𝑘𝑗(𝑠𝑡), when the
CCP is known,

1√
𝑁

𝑛,𝑇
∑
𝑖,𝑡=1

(
𝑛,𝑇
∑
𝑖,𝑡=1

𝑟𝑖𝑡,𝐽(𝑥𝑖𝑡, ℎ̂𝐽(𝑠𝑖𝑡; 𝑝∗))𝑟𝑖𝑡,𝐽(𝑥𝑖𝑡, ℎ̂𝐽(𝑠𝑖𝑡; 𝑝∗))
′
)

−1

𝑟𝑖𝑡,𝐽(𝑥𝑖𝑡, ℎ̂𝐽(𝑠𝑖𝑡; 𝑝∗))𝑦𝑖𝑡,𝐽(𝑝∗, ℎ̂𝐽(𝑠𝑖𝑡; 𝑝∗)) −
√

𝑁𝜃𝐽 ,

and (iii) an adjustment for the CCP estimation ̂𝑝 in the first step, i.e.,

1√
𝑁

𝑛,𝑇
∑
𝑖,𝑡=1

(
𝑛,𝑇
∑
𝑖,𝑡=1

𝑟𝑖𝑡,𝐽(𝑥𝑖𝑡, ℎ𝐽
∗ (𝑠𝑖𝑡; ̂𝑝))𝑟𝑖𝑡,𝐽(𝑥𝑖𝑡, ℎ𝐽

∗ (𝑠𝑖𝑡; ̂𝑝))
′
)

−1

𝑟𝑖𝑡,𝐽(𝑥𝑖𝑡, ℎ𝐽
∗ (𝑠𝑖𝑡; ̂𝑝))𝑦𝑖𝑡,𝐽( ̂𝑝, ℎ𝐽

∗ (𝑠𝑖𝑡; ̂𝑝)) −
√

𝑁𝜃𝐽 ,

Proposition B.1 of the Appendix shows that the leading term
√

𝑁(𝜃𝐽 − 𝜃𝐽∗) is 𝑂𝑝(𝛽𝐽+1).
We then just derive the other two terms.
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In appendix D, we show the general results of the asymptotic variance of semiparametric
M-estimators with generated dependent variables, which cover the present problem as a
special case. The results here are derived using the general formulas in appendix D.

We consider the second adjustment term first, which can be analyzed by the pathwise
derivative approach in Newey (1994a, page 1360-1361) or Hahn and Ridder (2013, page
327). The unknown functions in ℎ𝐽(𝑠𝑡; ̂𝑝) in the second step nonparametric regressions are
the difference between partial means in Newey (1994b)’s terminology. Letting

𝜅𝑖𝑡 ≡ 1(𝑎𝑖𝑡 = 1)
𝑝∗(𝑠𝑖𝑡)

− 1 − 1(𝑎𝑖𝑡 = 1)
1 − 𝑝∗(𝑠𝑖𝑡)

,

it can be shown that the second adjustment term equals

1√
𝑁

𝑛,𝑇 ,𝐽
∑

𝑖,𝑡,𝑗=1

𝜕𝑚∗
𝜕𝑦𝑖𝑡

𝛽𝑗[𝜅𝑖𝑡𝜂(𝑝∗(𝑠𝑖,𝑡+𝑗)) − ℎ1𝑗∗(𝑠𝑖𝑡)] (27)

+ 1√
𝑁

𝑛,𝑇 ,𝐽
∑

𝑖,𝑡,𝑗=1

𝜕𝑚∗
𝜕𝑟𝑖𝑡

𝛽𝑗 (0
1
) ⊗ [𝜅𝑖𝑡𝑥𝑖,𝑡+𝑗 − ℎ2𝑗∗(𝑠𝑖𝑡)] (28)

+ 1√
𝑁

𝑛,𝑇 ,𝐽
∑

𝑖,𝑡,𝑗=1

𝜕𝑚∗
𝜕𝑟𝑖𝑡

𝛽𝑗 (1
0
) ⊗ [𝜅𝑖𝑡𝑝∗(𝑠𝑖,𝑡+𝑗)𝑥𝑖,𝑡+𝑗 − ℎ3𝑗∗(𝑠𝑖𝑡)], (29)

+ 𝑜𝑝(1)

where 𝜕𝑚∗/𝜕𝑦𝑖𝑡 and 𝜕𝑚∗/𝜕𝑟𝑖𝑡 denote the derivatives of the moment equation 𝑚(𝑥𝑖𝑡, 𝜃𝐽∗, ℎ𝐽
∗ (𝑠𝑖𝑡; 𝑝∗), 𝑝∗)

with respect to 𝑦𝑖𝑡,𝐽∗ and 𝑟𝑖𝑡,𝐽∗, respectively. We have

𝜕𝑚∗
𝜕𝑦𝑖𝑡

= 𝑟𝑖𝑡,𝐽∗ and 𝜕𝑚∗
𝜕𝑟𝑖𝑡

= (𝑦𝑖𝑡,𝐽∗ − 𝑟′
𝑖𝑡,𝐽∗𝜃𝐽∗)𝐼 − 𝑟𝑖𝑡,𝐽∗𝜃𝐽∗.

Here 𝐼 is a 2𝑑𝑥 ×2𝑑𝑥 identity matrix, and 𝑑𝑥 is the dimension of 𝑥𝑡. Equation (27), (28) and
(29) are the adjustment terms for sampling error in ℎ̂𝐽

1 (𝑠𝑖𝑡; 𝑝∗), ℎ̂𝐽
2 (𝑠𝑖𝑡; 𝑝∗) and ℎ̂𝐽

3 (𝑠𝑖𝑡; 𝑝∗),
respectively.

The third adjustment term accounts for the sampling variation in estimating the CCP.
Unlike the adjustment for the generated regressors studied by Hahn and Ridder (2013), the
adjustment for the generated dependent variables can be obtained by simply linearizing the
moment equation with respect to the first step estimator. It can be shown using the formula
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in appendix D that the third adjustment term equals

1√
𝑁

𝑛,𝑇
∑
𝑖,𝑡=1

𝜕𝑚∗
𝜕𝑦𝑖𝑡

𝜑′(𝑝∗(𝑠𝑖𝑡))(𝑎𝑖𝑡 − 𝑝∗(𝑠𝑖𝑡)) (30)

+ 1√
𝑁

𝑛,𝑇 ,𝐽
∑

𝑖,𝑡,𝑗=1

𝜕𝑚∗
𝜕𝑦𝑖𝑡

𝛽𝑗𝜅𝑖𝑡
𝜕𝜂(𝑝∗(𝑠𝑖,𝑡+𝑗))

𝜕𝑝 (𝑎𝑖𝑡 − 𝑝∗(𝑠𝑖𝑡)) (31)

+ 1√
𝑁

𝑛,𝑇 ,𝐽
∑

𝑖,𝑡,𝑗=1

𝜕𝑚∗
𝜕𝑟𝑖𝑡

𝛽𝑗 (1
0
) ⊗ 𝜅𝑖𝑡𝑥𝑖,𝑡+𝑗(𝑎𝑖𝑡 − 𝑝∗(𝑠𝑖𝑡)) (32)

+ 𝑜𝑝(1), (33)

where

𝜕𝜂(𝑝∗(𝑠𝑖,𝑡+𝑗))
𝜕𝑝 = 𝜑(𝑝∗(𝑠𝑖,𝑡+𝑗)) + 𝑝∗(𝑠𝑖,𝑡+𝑗)𝜑′(𝑝∗(𝑠𝑖,𝑡+𝑗)) − 𝜓′(𝑝∗(𝑠𝑖,𝑡+𝑗)).

Equation (30), (31) and (32) are the adjustment terms for sampling error in 𝜑( ̂𝑝(𝑠𝑖𝑡),
ℎ𝐽

1 (𝑠𝑡; ̂𝑝) and ℎ𝐽
3 (𝑠𝑡; ̂𝑝).

Remark 3. From the influence functions, it easy to see that the discount factor affects the
asymptotic variance of the three-step estimator. The closer to 1 is the discount factor 𝛽,
the larger variance is the three-step estimator.

4 Estimation of General Markov Decision Processes
By “general” Markov decision processes, we allow for time varying flow utility functions and
state transition distributions, and finite decision horizon.

The plan for this section is the following. First, we derive a simpler moment condition
about the flow utility functions from eq. (14). This simpler moment condition, eq. (35),
resembles a partially linear model, in which the unknown function is the integrated value
function in the last sampling period ̄𝑉𝑇 (𝑠𝑇 ). Using the series approximation of ̄𝑉𝑇 (𝑠𝑇 )
and the partitioned linear regression arguments, we derive an estimable formula for the
vector of parameters specifying the flow utility functions. Such a formula is then estimated
by a three-step semiparametric estimator, which is our second part. Third, we derive the
influence function for our three-step semiparametric estimator. The arguments there have
two parts. We first show that the series approximation error of ̄𝑉𝑇 (𝑠𝑇 ) does not affect
the influence function of our three-step estimator under certain conditions. Then, the rest
arguments are similar to the ones we used in deriving the influence function for the infinite
horizon stationary model.
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4.1 Linear moment condition

Starting from eq. (14b), we have

̄𝑉𝑡(𝑠𝑡) = 𝑈𝑜
𝑡 (𝑠𝑡) + 𝛽 E( ̄𝑉𝑡+1(𝑠𝑡+1) ∣ 𝑠𝑡).

Iteratively substituting ̄𝑉𝑡+1(𝑠𝑡+1) with the above expression and using the Markov property,
we have

̄𝑉𝑡(𝑠𝑡) =
𝑇 −𝑡−1
∑
𝑗=0

𝛽𝑗 E(𝑈𝑜
𝑡+𝑗(𝑠𝑡+𝑗) ∣ 𝑠𝑡) + 𝛽𝑇 −𝑡 E( ̄𝑉𝑇 (𝑠𝑇 ) ∣ 𝑠𝑡).

Applying this formula to ̄𝑉𝑡+1(𝑠𝑡+1), eq. (14a) becomes

𝜑(𝑝𝑡(𝑠𝑡)) = �̃�𝑡(𝑥𝑡) +
𝑇 −𝑡−1
∑
𝑗=1

𝛽𝑗 Ẽ(𝑈𝑜
𝑡+𝑗(𝑠𝑡+𝑗) ∣ 𝑠𝑡) + 𝛽𝑇 −𝑡 E( ̄𝑉𝑇 (𝑠𝑇 ) ∣ 𝑠𝑡),

where
𝑈𝑜

𝑡 (𝑠𝑡) = 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) + 𝑝𝑡(𝑠𝑡)�̃�𝑡(𝑥𝑡) + 𝜂(𝑝𝑡(𝑠𝑡)).

Similar to the infinite horizon stationary model, let

𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) = 𝑥′
𝑡𝛼𝑡 and �̃�𝑡(𝑥𝑡) = 𝑥′

𝑡𝛿𝑡.

We have the following linear equations,

𝑦𝑇 −1 = 𝑥′
𝑇 −1𝛿𝑇 −1 + 𝛽 Ẽ( ̄𝑉𝑇 (𝑠𝑇 ) | 𝑠𝑇 −1) (34a)

𝑦𝑡 = 𝑥′
𝑡𝛿𝑡 +

𝑇 −𝑡−1
∑
𝑗=1

𝛽𝑗ℎ2,𝑡,𝑗(𝑠𝑡)′𝛼𝑡+𝑗 +
𝑇 −𝑡−1
∑
𝑗=1

𝛽𝑗ℎ3,𝑡,𝑗(𝑠𝑡)′𝛿𝑡+𝑗 + 𝛽𝑇 −𝑡 Ẽ( ̄𝑉𝑇 (𝑠𝑇 ) | 𝑠𝑡), (34b)

for 𝑡 = 1, … , 𝑇 − 2, where

𝑦𝑡 ≡ 𝜑(𝑝𝑡(𝑠𝑡)) +
𝑇 −𝑡−1
∑
𝑗=1

𝛽𝑗ℎ1,𝑡,𝑗(𝑠𝑡) and 𝑦𝑇 −1 ≡ 𝜑(𝑝𝑇 −1(𝑠𝑇 −1)),

with

ℎ1,𝑡,𝑗(𝑠𝑡) ≡ Ẽ(𝜂(𝑝𝑡+𝑗(𝑠𝑡+𝑗))∣𝑠𝑡), ℎ2,𝑡,𝑗(𝑠𝑡) ≡ Ẽ(𝑥𝑡+𝑗 |𝑠𝑡), ℎ3,𝑡,𝑗(𝑠𝑡) ≡ Ẽ(𝑝𝑡+𝑗(𝑠𝑡+𝑗)𝑥𝑡+𝑗 ∣𝑠𝑡).

Equation (34) provides a set of linear moment conditions about 𝜃 = (𝛿′
1, … , 𝛿′

𝑇 −1, 𝛼′
2, … , 𝛼′

𝑇 −1)′.
With some definition of matrices, we have a concise version of eq. (34). Suppose we have
panel data (𝑎𝑖𝑡, 𝑠′

𝑖𝑡) with 𝑖 = 1, …, 𝑛 and 𝑡 = 1, …, 𝑇 . For each 𝑖, define a (𝑇 − 1) × dim(𝜃)
matrix

𝑅𝑖 = (𝑅𝑖,𝛿, 𝑅𝑖,𝛼),
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where

𝑅𝑖,𝛿 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥′
𝑖,1 𝛽ℎ3,1,1(𝑠𝑖,1)′ 𝛽2ℎ3,1,2(𝑠𝑖,1)′ ⋯ 𝛽𝑇 −2ℎ3,1,𝑇 −2(𝑠𝑖,1)′

𝑥′
𝑖,2 𝛽ℎ3,2,1(𝑠𝑖,2)′ ⋯ 𝛽𝑇 −3ℎ3,2,𝑇 −3(𝑠𝑖,2)′

𝑥′
𝑖,3 ⋯ 𝛽𝑇 −4ℎ3,3,𝑇 −4(𝑠𝑖,3)′

⋱ ⋮

0 𝑥′
𝑖,𝑇 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝑅𝑖,𝛼 ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛽ℎ2,1,1(𝑠𝑖,1)′ 𝛽2ℎ2,1,2(𝑠𝑖,1)′ 𝛽3ℎ2,1,3(𝑠𝑖,1)′ ⋯ 𝛽𝑇 −2ℎ2,1,𝑇 −2(𝑠𝑖,1)′

𝛽ℎ2,2,1(𝑠𝑖,2)′ 𝛽2ℎ2,2,2(𝑠𝑖,2)′ ⋯ 𝛽𝑇 −3ℎ2,2,𝑇 −3(𝑠𝑖,2)′

𝛽ℎ2,3,1(𝑠𝑖,3)′ ⋯ 𝛽𝑇 −4ℎ2,3,𝑇 −4(𝑠𝑖,3)′

⋱ ⋮

0 𝛽ℎ2,𝑇 −2,1(𝑠𝑖,𝑇 −2)′

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let
𝐻𝑖 = (𝛽𝑇 −1 Ẽ( ̄𝑉𝑇 (𝑠𝑇 ) | 𝑠𝑖1), … , 𝛽 Ẽ( ̄𝑉𝑇 (𝑠𝑇 ) | 𝑠𝑖,𝑇 −1))′

For each 𝑖, let 𝑌𝑖 = (𝑦𝑖1, … , 𝑦𝑖,𝑇 −1)′ and eq. (34) becomes

𝑌𝑖 = 𝑅𝑖𝜃 + 𝐻𝑖.

Stacking 𝑌1, …, 𝑌𝑛, we have 𝑌 = (𝑌 ′
1 , … , 𝑌 ′

𝑛), which is a 𝑁 = 𝑛 ⋅ (𝑇 − 1) dimensional vector.
Define 𝑅 and 𝐻 similarly. We have

𝑌 = 𝑅𝜃 + 𝐻. (35)

Because 𝐻 involves the unknown ̄𝑉𝑇 (𝑠𝑇 ), eq. (35) is similar to the partially linear model
(Donald and Newey, 1994). It should be remarked that in discrete state space, Chou (2016)
shows that given the exclusion restriction the integrated value function ̄𝑉𝑇 (𝑠𝑇 ) is identifiable
up to a constant when 𝑇 ≥ 4.

4.2 Three-step estimator

Before listing our three-step recipe, we need to deal with the unknown function ̄𝑉𝑇 (𝑠𝑇 ) in
𝐻 by series approximation. Let

𝑞𝐾(𝑠) = (𝑞1(𝑠), … , 𝑞𝐾(𝑠))′
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be a vector of approximating functions, such as power series or splines. Let

𝑄𝑖,𝐾 =
⎡⎢⎢
⎣

𝛽𝑇 −1 Ẽ(𝑞𝐾(𝑠𝑇 )′ | 𝑠𝑖,1)
⋮

𝛽 Ẽ(𝑞𝐾(𝑠𝑇 )′ | 𝑠𝑖,𝑇 −1)

⎤⎥⎥
⎦

and 𝑄′
𝐾 = (𝑄′

1𝐾, … , 𝑄′
𝑛𝐾).

The estimator of 𝜃 are coefficients of 𝑅𝑖 in the linear regression of 𝑌𝑖 on 𝑅𝑖 and 𝑄𝑖,𝐾. By
the usual partioned linear regression arguments, the estimator may be written as follows,

𝜃𝐾 = (𝑅′𝑀𝐾𝑅)−1𝑅′𝑀𝐾𝑌 ,

with 𝑀𝐾 = 𝐼 − 𝑄𝐾(𝑄′
𝐾𝑄𝐾)−1𝑄′

𝐾. The invertibility of 𝑅′𝑀𝐾𝑅 will be discussed latter. In
the next subsection, we show the difference between 𝜃𝐾 and the true value of 𝜃 is asymptot-
ically negligible. So our estimator of 𝜃 is the sample analog of 𝜃𝐾 formed in the following
three steps.

Step 1: Estimate the CCP E(𝑎𝑖𝑡 | 𝑠𝑖𝑡) and 𝛽𝑇 −𝑡 Ẽ(𝑞𝐾(𝑠𝑇 ) | 𝑠𝑡) for 𝑡 = 1, …, 𝑇 − 1. Let ̂𝑝𝑡(𝑠𝑡)
be the CCP estimator. Let �̂�𝐾 be the estimate of 𝑄, and let �̂�𝐾 be the estimate
of 𝑀𝐾 from replacing 𝑄𝐾 with �̂�𝐾.

Step 2: Let 𝜑( ̂𝑝𝑡(𝑠𝑡)) be the estimator of 𝜑(𝑝𝑡(𝑠𝑡)). Let ̂ℎ be the estimator of ℎ from
nonparametric regressions with generated dependent variables.

Step 3: Then ̂𝑌 and �̂� are constructed by replacing the unknown 𝜑 and ℎ with their re-
spective estimates. We have the estimator

̂𝜃𝐾 = (�̂�′�̂�𝐾�̂�)−1�̂�′�̂�𝐾 ̂𝑌 .

4.3 Influence function for general decision process

Let 𝑁 = 𝑛 ⋅ (𝑇 − 1). Letting 𝜃∗ be the true vector of parameters specifying the flow utility
function, we can decompose

√
𝑁( ̂𝜃𝐾 − 𝜃∗) =

√
𝑁( ̂𝜃𝐾 − 𝜃𝐾) +

√
𝑁(𝜃𝐾 − 𝜃∗).

We can focus on
√

𝑁( ̂𝜃𝐾 − 𝜃𝐾) (variance term) if ‖
√

𝑁(𝜃𝐾 − 𝜃∗)‖ (bias term) is 𝑜𝑝(1). We
start by showing the conditions under which ‖

√
𝑁(𝜃𝐾 −𝜃∗)‖ = 𝑜𝑝(1). Then the properties of√

𝑁( ̂𝜃𝐾 − 𝜃𝐾) can be similarly analyzed using the influence function formula for the three-
step semiparametric estimators with generated dependent variables. So the details will be
omitted.
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Proposition 3. Suppose (i) The smallest eigenvalue of E(𝑁−1𝑅′𝑀𝐾𝑅)−1 is bounded away
from zero uniformly in 𝐾; (ii) The series approximation error of ̄𝑉𝑇 (𝑠𝑇 ) is of the order
𝑂(𝐾−𝜉). More explicitly, there exists 𝜉 > 0, such that sup𝑠∈𝒮∣ ̄𝑉𝑇 (𝑠𝑇 )−∑𝐾

𝑗=1 𝜌𝑗𝑞𝑗(𝑠)∣ ≤ 𝑂(𝐾−𝜉).
Then we have ‖𝜃𝐾 − 𝜃∗‖ = 𝑂𝑝(𝐾−𝜉). So if we impose undersmoothing conditions such that
𝐾−𝜉 = 𝑜(1/√𝑛), we can let the bias term ‖

√
𝑁(𝜃𝐾 − 𝜃∗)‖ = 𝑜𝑝(1).

Proof. See appendix C. ■

We derive the influence function of ̂𝜃𝐾 here. The derivation is similar to the stationary
Markov decision process case. First, the three-step estimator is viewed as a M-estimator
with the following moment equation,

𝑚(𝑥𝑖, 𝜃, ℎ(𝑠𝑖; 𝑝), 𝑝) = �̃�′
𝑖( ̃𝑌𝑖 − �̃�𝑖𝜃),

where 𝑥𝑖 = (𝑥′
𝑖1, … , 𝑥′

𝑖,𝑇 −1)′, 𝑠𝑖 = (𝑠′
𝑖1, … , 𝑠′

𝑖𝑇 )′, and 𝑝(𝑠𝑖) = (𝑝1(𝑠1), … , 𝑝𝑇 −1(𝑠𝑇 −1))′ is
the vector of CCP from period 1 to 𝑇 − 1. Here �̃�𝑖 = 𝑀𝑖,𝐾𝑅 and ̃𝑌𝑖 = 𝑀𝑖,𝐾𝑌 , with
𝑀 ′

𝐾 = (𝑀 ′
1,𝐾, … , 𝑀 ′

𝑛,𝐾). Each 𝑀𝑖,𝐾 is an (𝑇 − 1) × 𝑁 matrix. We write ℎ(𝑠𝑖; 𝑝) to
emphasize the dependence of ℎ on the CCP.The three-step estimator solves

𝑛
∑
𝑖=1

𝑚(𝑥𝑖, 𝜃, ℎ̂(𝑠𝑖; ̂𝑝), ̂𝑝)/𝑛 = 0.

We have E(𝑚(𝑥𝑖, 𝜃𝐾, ℎ∗(𝑠𝑖; 𝑝∗), 𝑝∗)) = 0.
Using the pathwise derivative approach in Newey (1994a), we again can write

√𝑛( ̂𝜃𝐾 −
𝜃𝐾) as the sum of the three components:

1√𝑛(
𝑛

∑
𝑖=1

�̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; 𝑝∗))′�̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; 𝑝∗)))
−1

�̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; 𝑝∗))′ ̃𝑌𝑖(ℎ∗(𝑠𝑖; 𝑝∗)) − √𝑛𝜃𝐾 (i)

1√𝑛(
𝑛

∑
𝑖=1

�̃�𝑖(𝑥𝑖, ℎ̂(𝑠𝑖; 𝑝∗))′�̃�𝑖(𝑥𝑖, ℎ̂(𝑠𝑖; 𝑝∗)))
−1

�̃�𝑖(𝑥𝑖, ℎ̂(𝑠𝑖; 𝑝∗))′ ̃𝑌𝑖(ℎ̂(𝑠𝑖; 𝑝∗)) − √𝑛𝜃𝐾 (ii)

1√𝑛(
𝑛

∑
𝑖=1

�̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; ̂𝑝))′�̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; ̂𝑝)))
−1

�̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; ̂𝑝))′ ̃𝑌𝑖(ℎ∗(𝑠𝑖; ̂𝑝)) − √𝑛𝜃𝐾 (iii)

By the definition of 𝜃𝐾, term (i) equals zero. We just need to calculate the other two terms.
Using the general results of the asymptotic variance of the three-step estimators with

generated dependent variables in appendix D, we have the following results. Let

𝜅𝑖𝑡 = 1(𝑎𝑖𝑡 = 1)
𝑝𝑡∗(𝑠𝑖𝑡)

− 1 − 1(𝑎𝑖𝑡 = 1)
1 − 𝑝𝑡∗(𝑠𝑖𝑡)

,

𝑎𝑖,𝑡,𝑗 = 𝛽𝑗 {𝜅𝑖𝑡𝜂(𝑝𝑡+𝑗,∗(𝑠𝑖,𝑡+𝑗)) − ℎ1,𝑡,𝑗∗(𝑠𝑖𝑡)} ,
𝑏𝑖,𝑡,𝑗 = 𝛽𝑗 [𝜅𝑖𝑡𝑥𝑖,𝑡+𝑗 − ℎ2,𝑡,𝑗∗(𝑠𝑖,𝑡)] ,
𝑐𝑖,𝑡,𝑗 = 𝛽𝑗 [𝜅𝑖𝑡𝑝𝑡+𝑗,∗(𝑠𝑖,𝑡+𝑗)𝑥𝑖,𝑡+𝑗 − ℎ3,𝑡,𝑗∗(𝑠𝑖𝑡)] ,
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and define two block upper triangular matrices,

⎡
⎢
⎢
⎢
⎣

𝑏′
𝑖,1,1 𝑏′

𝑖,1,2 𝑏′
𝑖,1,3 ⋯ 𝑏′

𝑖,1,𝑇 −2
𝑏′

𝑖,2,1 𝑏′
𝑖,2,2 ⋯ 𝑏′

𝑖,2,𝑇 −3
⋱ ⋱ ⋮

0 ⋱ 𝑏′
𝑖,𝑇 −2,1

⎤
⎥
⎥
⎥
⎦

(36)

⎡
⎢
⎢
⎢
⎣

𝑐′
𝑖,1,1 𝑐′

𝑖,1,2 𝑐′
𝑖,1,3 ⋯ 𝑐′

𝑖,1,𝑇 −2
𝑐′

𝑖,2,1 𝑐′
𝑖,2,2 ⋯ 𝑐′

𝑖,2,𝑇 −3
⋱ ⋱ ⋮

0 ⋱ 𝑐′
𝑖,𝑇 −2,1

⎤
⎥
⎥
⎥
⎦

. (37)

Let
𝐴𝑖 = (∑𝑇 −2

𝑗=1 𝑎𝑖,1,𝑗, ∑𝑇 −3
𝑗=1 𝑎𝑖,2,𝑗, ⋯ , ∑1

𝑗=1 𝑎𝑖,𝑇 −2,𝑗, 0)
′
,

𝐵𝑖 = [ 0(𝑇 −1)×𝑑𝛿

eq. (36)
01×𝑑𝛼

] ,

𝐶𝑖 = [ 0(𝑇 −2)×1 eq. (37) 0(𝑇 −1)×𝑑𝛼0 01×(𝑇 −2)
] .

Denote
�̃�𝑖∗ = �̃�𝑖(𝑥𝑖, ℎ∗(𝑠𝑖; 𝑝∗))

Term (ii) equals the following,

1√𝑛
𝑛

∑
𝑖=1

�̃�′
𝑖∗[𝐴𝑖 − (𝐵𝑖 + 𝐶𝑖)𝜃𝐾] − √𝑛𝜃𝐾 + 𝑜𝑝(1).

Let

𝐸𝑖 =
⎡⎢⎢
⎣

𝜑′(𝑝1∗(𝑠𝑖1))(𝑎𝑖1 − 𝑝1∗(𝑠𝑖1))
⋮

𝜑′(𝑝𝑇 −1∗(𝑠𝑖,𝑇 −1))(𝑎𝑖,𝑇 −1 − 𝑝𝑇 −1∗(𝑠𝑖,𝑇 −1))

⎤⎥⎥
⎦

,

𝐹𝑖 =
⎡
⎢
⎢
⎢
⎣

∑𝑇 −2
𝑗=1 𝛽𝑗 𝜕𝜂(𝑝1+𝑗(𝑠𝑖,1+𝑗))

𝜕𝑝 𝜅𝑖1(𝑎𝑖,1+𝑗 − 𝑝1+𝑗,∗(𝑠𝑖,1+𝑗))
⋮

𝛽 𝜕𝜂(𝑝𝑇−1(𝑠𝑖,𝑇−1))
𝜕𝑝 𝜅𝑖,𝑇 −1(𝑎𝑖,𝑇 −1 − 𝑝𝑇 −1,∗(𝑠𝑖,𝑇 −1))

0

⎤
⎥
⎥
⎥
⎦

.

Letting
𝑔𝑖,𝑡,𝑗 = 𝛽𝑗[𝑥𝑖,𝑡+𝑗𝜅𝑖𝑡(𝑎𝑖,𝑡+𝑗 − 𝑝𝑡+𝑗,∗(𝑠𝑖,𝑡+𝑗))],
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and define a block triangular matrix,

⎡
⎢
⎢
⎢
⎣

𝑔′
𝑖,1,1 𝑔′

𝑖,1,2 𝑔′
𝑖,1,3 ⋯ 𝑔′

𝑖,1,𝑇 −2
𝑔′

𝑖,2,1 𝑔′
𝑖,2,2 ⋯ 𝑔′

𝑖,2,𝑇 −3
⋱ ⋱ ⋮

0 ⋱ 𝑔′
𝑖,𝑇 −2,1

⎤
⎥
⎥
⎥
⎦

(38)

and let

𝐺𝑖 = [ 0(𝑇 −1)×1
eq. (38) 0(𝑇 −1)×𝑑𝛼01×(𝑇 −2)

] .

Term (iii) equals the following,

1√𝑛
𝑛

∑
𝑖=1

�̃�′
𝑖∗𝑀𝑖,𝐾

⎡⎢⎢
⎣

𝐸1 + 𝐹1 − 𝐺1𝜃𝐾
⋮

𝐸𝑛 + 𝐹𝑛 − 𝐺𝑛𝜃𝐾

⎤⎥⎥
⎦

− √𝑛𝜃𝐾 + 𝑜𝑝(1).

5 Monte Carlo Studies

5.1 Infinite horizon stationary decision process

In this numerical example, both 𝑥𝑡 and 𝑧𝑡 are scalars. Letting the flow utility functions have
the quadratic form,

�̃�(𝑥𝑡) = 𝛿1 + 𝛿2𝑥𝑡 + 𝛿3𝑥2
𝑡 and 𝑢(𝑎𝑡 = 0, 𝑥𝑡) = 𝛼1 + 𝛼2𝑥𝑡 + 𝛼3𝑥2

𝑡 ,

and 𝑢𝑡(𝑎𝑡 = 1, 𝑥𝑡) = �̃�(𝑥𝑡) + 𝑢(𝑎𝑡 = 0, 𝑥𝑡). In simulation, we let

𝑢(𝑎𝑡 = 0, 𝑥𝑡) = �̃�(𝑥𝑡) = .5 + 𝑥𝑡 − .5𝑥2
𝑡 .

The support for 𝑥𝑡 is [0, 3]. The excluded variable 𝑧𝑡 is time invariant (hence drop the time
subscript 𝑡 of 𝑧𝑡 in the sequel). Conditional on (𝑥𝑡, 𝑧), 𝑥𝑡+1 is generated from

𝑥𝑡+1 = min(3, 𝑑𝑡⋅(1+𝜉𝑡+1)𝑥𝑡+(1−𝑑𝑡)·2𝜉𝑡+1) with 𝜉𝑡+1|𝑧 ∼ Beta(shape1(𝑧), shape2(𝑧)).

The shape parameters the beta distribution are determined in the following way so that
E(𝜉𝑡+1 | 𝑧) = 𝑧 and Var(𝜉𝑡+1) = 1/20:

shape1(𝑧) = 20𝑧2(1 − 𝑧) − 𝑧 and shape2(𝑧) = shape1(𝑧) ⋅ (1 − 𝑧)
𝑧 .

To ensure shape1(𝑧), shape2(𝑧) > 0, we let 𝑧 follow a uniform distribution with support
[.053, .947]. We set the discount factor 𝛽 = .8. The utility shocks 𝜀𝑡(0), 𝜀𝑡(1) follow in-
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Table 1: Estimation of Infinite Horizon Stationary Markov Decision Process

Flow Utility Functions Panel Data

𝛿1 = 0.5 𝛿2 = 1 𝛿3 = −0.5 𝛼2 = 1 𝛼3 = −0.5 𝑛 𝑇

.525
(.065)

.940
(.112)

−.501
(.032)

.930
(.104)

−.456
(.027)

2e4 2

.544
(.101)

.903
(.169)

−.504
(.047)

.916
(.169)

−.436
(.045)

1e4 2

.621
(.182)

.771
(.294)

−.500
(.079)

.905
(.296)

−.389
(.084)

5e3 2

dependent type-I extreme value distribution. Given these structural parameters, we can
determine the true CCP.6

In the numerical examples, we simulate two periods (𝑇 = 2) dynamic discrete choices
by 𝑛 number of agents. The first period states {𝑥𝑖1, 𝑧𝑖 ∶ 𝑖 = 1, … , 𝑛} were drawn uniformly
from their support. We estimate the model when 𝑛 = 5, 000, 10, 000 and 20, 000. Assume
the discount factor is known in the estimation. Table 1 reports the performance of our
estimator based on 1, 000 replications.7 The performance is satisfying. There is bias due to
the smoothing in the nonparametric ingredient of our three-step semiparametric estimator.
As the cross-section sample size increases, the bias decreases. There is no information about
𝛼1, because the intercept of 𝑢(𝑎𝑡 = 0, 𝑥𝑡) is not identifiable.

5.2 General Markov decision process

Here, the data are still generated from the above stationary model, however, in the estima-
tion, we do not assume the stationarity. Instead, we let

�̃�𝑡(𝑥𝑡) = 𝛿1,𝑡 + 𝛿2,𝑡𝑥𝑡 + 𝛿3,𝑡𝑥2
𝑡 and 𝑢𝑡(𝑎𝑡 = 0, 𝑥𝑡) = 𝛼1,𝑡 + 𝛼2,𝑡𝑥𝑡 + 𝛼3,𝑡𝑥2

𝑡 ,

and estimate 𝛿𝑡 and 𝛼𝑡 for each sampling period.
In the numerical examples, we simulate six periods (𝑇 = 6) dynamic discrete choices by

𝑛 number of agents. As we did for the stationary model, we draw the first period states
{𝑥𝑖1, 𝑧𝑖 ∶ 𝑖 = 1, … , 𝑛} uniformly from their support and estimate the model when 𝑛 =
5, 000, 10, 000 and 20, 000. Assume the discount factor is known in the estimation. Table 2
reports the performance of our estimator based on 1, 000 replications. The performance

6Readers, who are interested in the algorithm of determining CCP from the structural parameters, can
find the details in the documentation of our codes.

7The Monte Carlo simulation studies used the ALICE High Performance Computing Facility at the
University of Leicester.
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Table 2: Estimation of General Markov Decision Process

Flow Utility Fun. 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑛

𝛿1 = 0.5 .571
(.101)

.532
(.066)

.520
(.061)

.510
(.054)

.523
(.060)

2e4
𝛿2 = 1 .893

(.179)
.949
(.135)

.975
(.132)

.992
(.119)

.953
(.134)

𝛿3 = −0.5 −.470
(.046)

−.486
(.044)

−.499
(.043)

−.507
(.038)

−.498
(.044)

𝛼2 = 1 1.078
(.114)

1.058
(.112)

1.017
(.121)

.993
(.119)

𝛼3 = −0.5 −.515
(.041)

−.510
(.037)

−.496
(.038)

−.490
(.034)

𝛿1 = 0.5 .582
(.141)

.545
(.091)

.525
(.086)

.507
(.080)

.538
(.080)

1e4
𝛿2 = 1 .882

(.246)
.929
(.190)

.969
(.188)

1.001
(.175)

.926
(.179)

𝛿3 = −0.5 −.467
(.062)

−.484
(.063)

−.502
(.062)

−.514
(.057)

−.500
(.058)

𝛼2 = 1 1.092
(.161)

1.071
(.167)

1.019
(.177)

.978
(.172)

𝛼3 = −0.5 −.520
(.058)

−.508
(.053)

−.492
(.053)

−.483
(.051)

𝛿1 = 0.5 .610
(.208)

.567
(.136)

.539
(.116)

.523
(.109)

.559
(.111)

5e3
𝛿2 = 1 .846

(.366)
.892
(.276)

.942
(.256)

.967
(.241)

.874
(.240)

𝛿3 = −0.5 −.466
(.089)

−.483
(.090)

−.501
(.086)

−.514
(.082)

−.504
(.082)

𝛼2 = 1 1.105
(.231)

1.075
(.228)

1.027
(.240)

.964
(.228)

𝛼3 = −0.5 −.513
(.084)

−.497
(.075)

−.484
(.074)

−.466
(.069)

is satisfying. There is bias due to the smoothing in the nonparametric ingredient of our
three-step semiparametric estimator. As the cross-section sample size increases, the bias
decreases. Again, 𝛼1,𝑡 is not identifiable.

6 Conclusion
We propose a three-step semiparametric estimator of the expected flow utility functions of
structural dynamic programming discrete choice models. Our estimator is an extension of
the CCP estimators in the literature. The main advantage of our estimator is that it does not
require the estimation of the state transition distributions, which could be difficult when
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the dimension of the observable state variables is even moderately large. Our estimator
can be applied to both infinite horizon stationary discrete choice models and the finite
horizon nonstationary model with time varying expected flow utility functions and/or state
transition distributions.
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Appendix

A Proofs for the approximation formulas in infinite hori-
zon stationary problem

Proof of Lemma 3. We prove by induction. For 𝐽 = 1, we have

E(𝑔(𝑠𝑡+1) | 𝑠𝑡) = E(𝑞𝐾(𝑠𝑡+1)′𝜌 + 𝜈(𝑠𝑡+1) ∣ 𝑠𝑡)
= E(𝑞𝐾(𝑠𝑡+1)′𝜌 ∣ 𝑠𝑡) + E(𝜈(𝑠𝑡+1) | 𝑠𝑡)

=
𝐾

∑
𝑘=1

𝜌𝑘 ̄𝑞𝑘(𝑠𝑡) + E(𝜈(𝑠𝑡+1) | 𝑠𝑡)

=
𝐾

∑
𝑘=1

𝜌𝑘[𝑞𝐾(𝑠𝑡)′𝛾𝑘 + 𝜔𝑘(𝑠𝑡)] + E(𝜈(𝑠𝑡+1) | 𝑠𝑡)

=
𝐾

∑
𝑘=1

𝜌𝑘𝑞𝐾(𝑠𝑡)′𝛾𝑘 +
𝐾

∑
𝑘=1

𝜌𝑘𝜔𝑘(𝑠𝑡) + E(𝜈(𝑠𝑡+1) | 𝑠𝑡)

= 𝑞𝐾(𝑠𝑡)′Γ 𝜌 + 𝜔𝐾(𝑠𝑡)′𝜌 + E(𝜈(𝑠𝑡+1) | 𝑠𝑡),

which equals to the formula in this lemma.
Suppose the lemma holds for 𝐽 = 𝐽∗, we need to show that it holds for 𝐽 = 𝐽∗ + 1. It

follows from the Markov property that

E(𝑔(𝑠𝑡+𝐽∗+1) | 𝑠𝑡) = E(E(𝑔(𝑠𝑡+𝐽∗+1) | 𝑠𝑡+1) | 𝑠𝑡)

= E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽∗𝜌 +
𝐽∗

∑
𝑗=1

E(𝜔𝐾(𝑠𝑡+𝐽∗+1−𝑗)′Γ 𝑗−1𝜌 ∣ 𝑠𝑡+1) + E(𝜈(𝑠𝑡+𝐽∗+1) | 𝑠𝑡+1) ∣ 𝑠𝑡)

= E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽∗𝜌 | 𝑠𝑡) +
𝐽∗

∑
𝑗=1

E(𝜔𝐾(𝑠𝑡+𝐽∗+1−𝑗)′Γ 𝑗−1𝜌 ∣ 𝑠𝑡) + E(𝜈(𝑠𝑡+𝐽∗+1) | 𝑠𝑡).

We can organize E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽∗𝜌 | 𝑠𝑡) as follows,

E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽∗𝜌 | 𝑠𝑡) = E(𝑞𝐾(𝑠𝑡+1)′ | 𝑠𝑡)Γ 𝐽∗𝜌
= ( ̄𝑞1(𝑠𝑡), … , ̄𝑞𝐾(𝑠𝑡))Γ 𝐽∗𝜌

= [(𝑞𝐾(𝑠𝑡)′𝛾1, … , 𝑞𝐾(𝑠𝑡)′𝛾𝐾) + 𝜔𝐾(𝑠𝑡)′]Γ 𝐽∗𝜌

= 𝑞𝐾(𝑠𝑡)′Γ 𝐽∗+1𝜌 + 𝜔𝐾(𝑠𝑡)′Γ 𝐽∗𝜌.
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Together, we have

E(𝑔(𝑠𝑡+𝐽∗+1) | 𝑠𝑡) − 𝑞𝐾(𝑠𝑡)′Γ 𝐽∗+1𝜌 =
𝐽∗+1
∑
𝑗=1

E(𝜔𝐾(𝑠𝑡+𝐽∗+1−𝑗)′Γ 𝑗−1𝜌 ∣ 𝑠𝑡) + E(𝜈(𝑠𝑡+𝐽∗+1) | 𝑠𝑡).

By induction, we conclude that the lemma is correct. ■

Proof of Proposition 1. We prove by showing the order of
𝐽

∑
𝑗=1

E(𝜔𝐾(𝑠𝑡+𝐽−𝑗)′Γ 𝑗−1𝜌 ∣ 𝑠𝑡) + E(𝜈(𝑠𝑡+𝐽) | 𝑠𝑡).

First, viewing E(⋅ | 𝑠𝑡) as a linear operator (whose norm is 1), we know

‖E(𝜈(𝑠𝑡+𝐽) | 𝑠𝑡)‖2 ≤ ‖𝜈(𝑠)‖2 = 𝑂(𝐾−𝑚).

Second, by the same token,

‖E(𝜔𝐾(𝑠𝑡+𝐽−𝑗)′Γ 𝑗−1𝜌 ∣ 𝑠𝑡)‖2 ≤ ‖𝜔𝐾(𝑠𝑡+𝐽−𝑗)′Γ 𝑗−1𝜌‖2.

Let ̃𝜌𝑗 = Γ 𝑗𝜌. It follows from the triangle inequality, we have

‖𝜔𝐾(𝑠𝑡+𝐽−𝑗)′Γ 𝑗−1𝜌‖2 = ‖𝜔𝐾(𝑠𝑡+𝐽−𝑗)′ ̃𝜌𝑗−1‖2 ≤
𝐾

∑
𝑘=1

| ̃𝜌𝑗−1,𝑘|‖𝜔𝑘(𝑠𝑡)‖2. (39)

It then follows from Cauchy’s inequality that

eq. (39) ≤
√√√
⎷

𝐾
∑
𝑘=1

| ̃𝜌𝑗−1,𝑘|2 ⋅
√√√
⎷

𝐾
∑
𝑘=1

‖𝜔𝑘(𝑠𝑡)‖2 = ‖ ̃𝜌𝑗−1‖
√√√
⎷

𝐾
∑
𝑘=1

‖𝜔𝑘(𝑠𝑡)‖2 ∼ ‖ ̃𝜌𝑗−1‖ ⋅ 𝑂(𝐾1/2−𝑚).

For ̃𝜌𝑗 = Γ 𝑗𝜌, we have ‖ ̃𝜌𝑗‖ = ‖Γ 𝑗𝜌‖ ≤ ‖Γ 𝑗‖‖𝜌‖. Because ‖𝜌‖ ≤ ‖𝑔‖2 < ∞, we have
‖ ̃𝜌𝑗‖ ∼ ‖Γ 𝑗‖. As a result,

eq. (39) ≤ ‖Γ 𝑗‖ ⋅ 𝑂(𝐾1/2−𝑚).

The order of the error term is 𝑂(𝐾1/2−𝑚) ⋅∑𝐽
𝑗=1‖Γ 𝑗‖. For any finite 𝐽 , the order is of course

𝑂(𝐾1/2−𝑚).
We are also interested in the case when 𝐽 → ∞. Lemma A.1 shows that ‖Γ ‖ ≤ 1 with

equality only when 𝜔𝐾(𝑠𝑡) = 0 or Γ = 0. For the two trivial cases, if Γ = 0, then the bound
is simply zero; if 𝜔𝐾(𝑠𝑡) = 0, the bound is simply ‖E(𝜈(𝑠𝑡+𝐽) | 𝑠𝑡)‖2 ≤ ‖𝜈(𝑠)‖2 = 𝑂(𝐾−𝑚).
If ‖Γ ‖ < 1, we know that the above display is simply

𝑂(𝐾1/2−𝑚) ⋅
∞

∑
𝑗=1

‖Γ 𝑗‖ ≤ 𝑂(𝐾1/2−𝑚) ⋅
∞

∑
𝑗=1

‖Γ ‖𝑗 = 𝑂(𝐾1/2−𝑚) 1
1 − ‖Γ ‖ = 𝑂(𝐾1/2−𝑚).

So we conclude that the approximation bound is 𝑂(𝐾1/2−𝑚) regardless of the value of 𝐽 . ■
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Lemma A.1. We have ‖Γ ‖ ≤ 1 with equality only when 𝜔𝐾(𝑠𝑡) = 0 or Γ = 0.

Proof. For any 𝜌0 ∈ ℝ𝐾, we have

E(𝑞𝐾(𝑠𝑡+1)′Γ𝜌0 | 𝑠𝑡) = E(𝑞𝐾(𝑠𝑡+1)′ | 𝑠𝑡)Γ𝜌0

= 𝑞𝐾(𝑠𝑡)′Γ 2𝜌0 + 𝜔𝐾(𝑠𝑡)′Γ𝜌0.

Note that 𝑞𝐾(𝑠) = (𝑞1(𝑠), … , 𝑞𝐾(𝑠))′ is orthogonal to 𝜔𝐾(𝑠) = (𝜔1(𝑠), … , 𝜔𝐾(𝑠))′, because
𝜔𝑘(𝑠) = ∑∞

𝑗=𝐾+1 𝛾𝑘,𝑗𝑞𝑗(𝑠). So we have

‖𝑞𝐾(𝑠𝑡)′Γ 2𝜌0 + 𝜔𝐾(𝑠𝑡)′Γ𝜌0‖2 = ‖𝑞𝐾(𝑠𝑡)′Γ 2𝜌0‖2 + ‖𝜔𝐾(𝑠𝑡)′Γ𝜌0‖2,

and
‖𝑞𝐾(𝑠𝑡)′Γ 2𝜌0‖2 ≤ ‖E(𝑞𝐾(𝑠𝑡+1)′Γ𝜌0 | 𝑠𝑡)‖2,

with equality only when 𝜔𝐾(𝑠𝑡)′Γ𝜌0 = 0. Since 𝑞1(𝑠), … , 𝑞𝐾(𝑠) are orthonormal, we have

‖𝑞𝐾(𝑠𝑡)′Γ 2𝜌0‖2 = ‖Γ 2𝜌0‖.

We also know
‖E(𝑞𝐾(𝑠𝑡+1)′Γ𝜌0 | 𝑠𝑡)‖2 ≤ ‖𝑞𝐾(𝑠𝑡+1)′Γ𝜌0‖ = ‖Γ𝜌0‖.

We conclude that
‖Γ 2𝜌0‖ ≤ ‖Γ𝜌0‖

for all 𝜌0 ∈ ℝ𝐾. Thus, ‖Γ ‖ ≤ 1 with equality only when 𝜔𝐾(𝑠𝑡) = 0 or Γ = 0. ■

Proof of Proposition 2. We write

E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡, 𝑎𝑡 = 𝑎) = E(E(𝑔(𝑠𝑡+𝐽) | 𝑠𝑡+1) | 𝑠𝑡, 𝑎𝑡 = 𝑎)
= E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽−1𝜌 + 𝑂(𝐾1/2−𝑚) | 𝑠𝑡, 𝑎𝑡 = 𝑎)
= E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽−1𝜌 | 𝑠𝑡, 𝑎𝑡 = 𝑎) + 𝑂(𝐾1/2−𝑚).

We then write

E(𝑞𝐾(𝑠𝑡+1)′Γ 𝐽−1𝜌 | 𝑠𝑡, 𝑎𝑡 = 𝑎) = E(𝑞𝐾(𝑠𝑡+1)′ | 𝑠𝑡, 𝑎𝑡)Γ 𝐽−1𝜌
= 𝑞𝐾(𝑠𝑡)′Γ (𝑎)Γ 𝐽−1𝜌 + 𝜔𝐾(𝑠𝑡, 𝑎)′Γ 𝐽−1𝜌
= 𝑞𝐾(𝑠𝑡)′Γ (𝑎)Γ 𝐽−1𝜌 + 𝑂(𝐾1/2−𝑚).

The last line follows from the proof of proposition 1. The two displays above together shows
the result. ■
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B Order of the bias term in infinite horizon stationary
Markov decision process

We first have that

𝑦𝑖𝑡 − 𝑦𝑖𝑡,𝐽 =
∞

∑
𝑗=𝐽+1

𝛽𝑗ℎ1𝑗(𝑠𝑖𝑡),

𝑟′
𝑖𝑡 − 𝑟′

𝑖𝑡,𝐽 = (
∞

∑
𝑗=𝐽+1

𝛽𝑗ℎ3𝑗(𝑠𝑖𝑡)′,
∞

∑
𝑗=𝐽+1

𝛽𝑗ℎ2𝑗(𝑠𝑖𝑡)′).

It follows from Assumption 6.(i),

|𝑦𝑖𝑡 − 𝑦𝑖𝑡,𝐽 | ≤ 𝛽𝐽+12𝜁/(1 − 𝛽), (40a)

‖𝑟𝑖𝑡 − 𝑟𝑖𝑡,𝐽‖ ≤ 𝛽𝐽+1√𝑑𝑥𝜁/(1 − 𝛽). (40b)

Proposition B.1. Given Assumption 6, we have
√

𝑁(𝜃𝐽 − 𝜃𝐽∗) = 𝑂𝑝(𝛽𝐽+1).

Proof. As an M-estimator, the influence function of 𝜃𝐽 is

𝑟𝑖𝑡,𝐽∗(𝑦𝑖𝑡,𝐽∗ − 𝑟′
𝑖𝑡,𝐽∗𝜃𝐽∗).

For the simplicity of exposition, we omit the subscript “*” in 𝑟𝑖𝑡,𝐽∗ and 𝑦𝑖𝑡,𝐽∗ throughout
the proof. To prove the proposition, it suffices to show that

𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃𝐽∗) = 𝑂𝑝(𝛽𝐽+1).

Because 𝑦𝑖𝑡 − 𝑟′
𝑖𝑡𝜃∗ = 0, it can be shown that

𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃𝐽∗) = 𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′

𝑖𝑡,𝐽𝜃𝐽∗) − 𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡 − 𝑟′
𝑖𝑡𝜃∗)

= 𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑦𝑖𝑡) (41)

+ 𝑟𝑖𝑡,𝐽(𝑟𝑖𝑡 − 𝑟𝑖𝑡,𝐽)′𝜃𝐽∗ (42)

+ 𝑟𝑖𝑡,𝐽𝑟′
𝑖𝑡(𝜃∗ − 𝜃𝐽∗). (43)

It follows from eq. (40) that eq. (41) and (42) are both 𝑂𝑝(𝛽𝐽+1). To complete the proof,
we only need to show that 𝜃∗ − 𝜃𝐽∗ = 𝑂𝑝(𝛽𝐽+1).

We have E(𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃𝐽∗)) = 0, and

E(𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃𝐽∗ − 𝑦𝑖𝑡 + 𝑟′

𝑖𝑡𝜃∗)) = E(𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃𝐽∗)) = 0.

It then can be shown that

E(𝑟𝑖𝑡,𝐽𝑟′
𝑖𝑡,𝐽)(𝜃𝐽∗ − 𝜃∗) = E(𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑦𝑖𝑡)) − E(𝑟𝑖𝑡,𝐽(𝑟𝑖𝑡,𝐽 − 𝑟𝑖𝑡)′)𝜃∗.
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Applying eq. (40), we have 𝜃∗ − 𝜃𝐽∗ = 𝑂𝑝(𝛽𝐽+1). So we conclude that 𝑟𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑟′
𝑖𝑡,𝐽𝜃𝐽∗)

is 𝑂𝑝(𝛽𝐽+1). ■

Proposition B.2. Given Assumption 6, we have
√

𝑁(𝜃𝐽∗ − 𝜃∗) = 𝑂𝑝(𝛽𝐽+1).

Proof. We write
√

𝑁(𝜃𝐽∗ − 𝜃∗) =
√

𝑁(𝜃𝐽∗ − 𝜃𝐽) +
√

𝑁(𝜃𝐽 − 𝜃∗). Proposition B.1 has shown
that

√
𝑁(𝜃𝐽∗ −𝜃𝐽) = 𝑂𝑝(𝛽𝐽+1). Lemma B.1 below shows that

√
𝑁(𝜃𝐽 −𝜃∗) = 𝑂𝑝(𝛽𝐽+1). ■

Lemma B.1. Given Assumption 6, we have
√

𝑁(𝜃𝐽 − 𝜃∗) = 𝑂𝑝(𝛽𝐽+1).

Proof. For the simplicity of exposition, we omit the subscript “*”. We decompose 𝜃𝐽 − 𝜃 as
the following sum,

(𝑅𝐽
′𝑅𝐽/𝑁)−1(𝑅𝐽

′𝑌𝐽)/𝑁 − (𝑅𝐽
′𝑅𝐽/𝑁)−1𝑅′𝑌 /𝑁 (44)

+(𝑅𝐽
′𝑅𝐽/𝑁)−1𝑅′𝑌 /𝑁 − (𝑅′𝑅/𝑁)−1𝑅′𝑌 /𝑁. (45)

Below, we derive the orders of eq. (44) and (45).
We first derive the order of eq. (44), which equals

E(𝑟𝑖𝑡,𝐽𝑟′
𝑖𝑡,𝐽)−1[(𝑅𝐽

′𝑌𝐽)/𝑁 − 𝑅′𝑌 /𝑁] + 𝑜𝑝(1),

if (𝑅𝐽
′𝑌𝐽)/𝑁 − 𝑅′𝑌 /𝑁 = 𝑂𝑝(1), which will be shown. Because Assumption 6.(ii) has

assumed the smallest eigenvalue of E(𝑟𝑖𝑡,𝐽𝑟′
𝑖𝑡,𝐽) is bounded from zero, it suffices to derive the

order of (𝑅𝐽
′𝑌𝐽)/𝑁 −𝑅′𝑌 /𝑁 to find the order of eq. (44). Decompose (𝑅𝐽

′𝑌𝐽)/𝑁 −𝑅′𝑌 /𝑁
as the following sum

(𝑅′
𝐽𝑌𝐽 − 𝑅′

𝐽𝑌 )/𝑁 + (𝑅′
𝐽𝑌 − 𝑅′𝑌 )/𝑁.

To derive the order of (𝑅′
𝐽𝑌𝐽 − 𝑅′

𝐽𝑌 )/𝑁 , we consider its squared mean and then use the
Markov inequality. Recall that 𝑟𝑖𝑡,𝐽 is a 𝑑𝜃-dimensional vector. We have

E(‖(𝑅′
𝐽𝑌𝐽 − 𝑅′

𝐽𝑌 )/𝑁‖2) =
𝑑𝜃

∑
ℓ=1

E([𝑁−1
𝑛

∑
𝑖=1

𝑇
∑
𝑡=1

𝑟ℓ,𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑦𝑖𝑡)]
2
).

Since 𝑑𝜃 is finite, it suffices to consider the order of an individual term of the above sum.
Since 𝑇 is finite, without loss of generality, we consider the case, where 𝑇 = 2. The term
E([𝑁−1 ∑𝑛

𝑖=1 ∑𝑇 =2
𝑡=1 𝑟ℓ,𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑦𝑖𝑡)]2) equals

(2𝑛)−1 E([𝑟ℓ,𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑦𝑖𝑡)]2) + (2𝑛)−1 E(𝑟ℓ,𝑖1,𝐽(𝑦𝑖1,𝐽 − 𝑦𝑖1)𝑟ℓ,𝑖2,𝐽(𝑦𝑖2,𝐽 − 𝑦𝑖2)).

Because the regressors 𝑟ℓ,𝑖𝑡,𝐽 are bounded, and the difference |𝑦𝑖𝑡 − 𝑦𝑖𝑡,𝐽 | is of order 𝛽𝐽+1,
we conclude

E([𝑁−1
𝑛

∑
𝑖=1

𝑇 =2
∑
𝑡=1

𝑟ℓ,𝑖𝑡,𝐽(𝑦𝑖𝑡,𝐽 − 𝑦𝑖𝑡)]
2
) = 𝑂(𝑛−1𝛽2(𝐽+1)).
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By the Markov inequality, (𝑅′
𝐽𝑌𝐽 − 𝑅′

𝐽𝑌 )/𝑁 = 𝑂𝑝(𝑁−1/2𝛽(𝐽+1)). Similar arguments show
that (𝑅′

𝐽𝑌 −𝑅′𝑌 )/𝑁 = 𝑂𝑝(𝑁−1/2𝛽(𝐽+1)). Hence, we conclude (𝑅′
𝐽𝑌𝐽 −𝑅′𝑌 )/𝑁 , henceforth

eq. (44), is 𝑂𝑝(𝑁−1/2𝛽(𝐽+1)).
We next derive the order of eq. (45), which rewritten as follows,

[(𝑅𝐽
′𝑅𝐽/𝑁)−1 − (𝑅′𝑅/𝑁)−1]𝑅′𝑌 /𝑁.

The term 𝑅′𝑌 /𝑁 = 𝑂𝑝(𝑁−1/2). Letting

𝑈𝐽 ≡ 2𝑅′
𝐽(𝑅 − 𝑅𝐽)/𝑁 + (𝑅 − 𝑅𝐽)′(𝑅 − 𝑅𝐽)/𝑁,

the term (𝑅𝐽
′𝑅𝐽/𝑁)−1 − (𝑅′𝑅/𝑁)−1 equals

(𝑅𝐽
′𝑅𝐽/𝑁)−1𝑈𝐽(𝑅𝐽

′𝑅𝐽/𝑁)−1[𝐼 + 𝑈𝐽(𝑅𝐽
′𝑅𝐽/𝑁)−1]−1.

This can be shown by the Woodbury formula in linear algebra. It is easy to see that
𝑈𝐽 = 𝑂𝑝(𝛽𝐽+1), hence the above display is also 𝑂𝑝(𝛽𝐽+1). We then conclude that eq. (45),
is 𝑂𝑝(𝑁−1/2𝛽(𝐽+1)). ■

C Order of the bias term in general Markov decision
process

Proof of Proposition 3. Let 𝜈(𝑠𝑇 ) = ̄𝑉𝑇 (𝑠𝑇 ) − ∑𝐾
𝑗=1 𝜌𝑗𝑞𝑗(𝑠𝑇 ) be the residual of series ap-

proximation. Let 𝜈 = 𝐻 − 𝑄𝐾𝜌𝐾 denote the vector consisting of 𝛽𝑇 −𝑡 Ẽ(𝜈(𝑠𝑇 ) | 𝑠𝑖𝑡) for 𝑖
and 𝑡. Here 𝜌𝐾 = (𝜌1, … , 𝜌𝐾)′.

We will show that ‖
√

𝑁(𝜃𝐾 − 𝜃∗)‖ ≤ √𝜆𝑚𝑎𝑥‖𝜈‖, where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of
𝑅∗ ≡ (𝑁−1𝑅′𝑀𝐾𝑅)−1. Replacing 𝑌 in 𝜃𝐾 = (𝑅′𝑀𝐾𝑅)−1𝑅′𝑀𝐾𝑌 with 𝑌 = 𝑅𝜃∗ + 𝐻, we
have 𝜃𝐾 − 𝜃∗ = (𝑅′𝑀𝐾𝑅)−1𝑅′𝑀𝐾𝜈. Then

‖𝑁(𝜃𝐾 − 𝜃∗)‖2 = ‖(𝑅∗)−1𝑅′𝑀𝐾𝜈‖2

= 𝜈′𝑀𝐾𝑅(𝑅∗)−1(𝑅∗)−1𝑅′𝑀𝐾𝜈
= 𝜈′𝑀𝐾𝑅(𝑅∗)−1/2(𝑅∗)−1(𝑅∗)−1/2𝑅′𝑀𝐾𝜈
≤ 𝜆𝑚𝑎𝑥 ⋅ 𝜈′𝑀𝐾𝑅(𝑅∗)−1/2(𝑅∗)−1/2𝑅′𝑀𝐾𝜈
= 𝜆𝑚𝑎𝑥 ⋅ 𝜈′𝑀𝐾𝑅(𝑅∗)−1𝑅′𝑀𝐾𝜈
= 𝑁𝜆𝑚𝑎𝑥 ⋅ 𝜈′𝑀𝐾𝑅(𝑅′𝑀𝐾𝑅)−1𝑅′𝑀𝐾𝜈
≤ 𝑁𝜆𝑚𝑎𝑥‖𝜈‖2.
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We have
‖
√

𝑁(𝜃𝐾 − 𝜃∗)‖ ≤ √𝜆𝑚𝑎𝑥‖𝜈‖. (46)

By the condition that sup𝑠∈𝒮∣ ̄𝑉𝑇 (𝑠𝑇 ) − ∑𝐾
𝑗=1 𝜌𝑗𝑞𝑗(𝑠)∣ = sup𝑠∈𝒮|𝜈(𝑠)| ≤ 𝑂(𝐾−𝜉), we have

‖𝜈‖ =
√

𝑁𝑂(𝐾−𝜉). Also, √𝜆𝑚𝑎𝑥 < ∞ with probability 1. So we have ‖(𝜃𝐾 − 𝜃∗)‖ =
𝑂𝑝(𝐾−𝜉). ■

D Asymptotic variance of three-step semiparametric M-
estimators with generated dependent variables

This appendix derives the asymptotic variance for the three-step semiparametric M-estimators
with generated dependent variabels in the second step nonparametric regressions. First, we
describe the three-step estimator for which our proposed formula applies. Second, we de-
rive the influence function and the asymptotic variance. Third, we derive the asymptotic
variance formula when the second step nonparametric regressions are “partial means” in
Newey’s (1994b) terminology. The general formula can be applied to our three-step CCP
estimator.

Assume that we have random sample {𝑦𝑖, 𝑥𝑖, 𝑧𝑖 ∶ 𝑖 = 1, … , 𝑛} about random variables 𝑦,
𝑥 and 𝑧. In the first step, we obtain an estimator ̂𝑝(𝑥, 𝑧) of 𝑝∗(𝑥, 𝑧) ≡ E(𝑦 | 𝑥, 𝑧) by non-
parametric regression of 𝑦 on 𝑥 and 𝑧. The variable 𝑤∗ = 𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧)) is the dependent
variable in the second step nonparametric regression. The function 𝜑 is known.

In the second step, the goal is to estimate

ℎ∗(𝑥; 𝑤∗) ≡ E(𝑤∗ = 𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧)) ∣ 𝑥).

Obviously, when 𝜑(𝑥, 𝑧, 𝑝) is linear in 𝑝, the first step and second step can be merged by
the law of iterated expectation. So we are interested in the case where 𝜑 is nonlinear in
𝑝. Because 𝑝∗(𝑥, 𝑧), hence 𝑤∗, is not observable, we use �̂�𝑖 = 𝜑(𝑥𝑖, 𝑧𝑖, ̂𝑝(𝑥𝑖, 𝑧𝑖)) in the
nonparametric regression. The nonparametric regression estimator of �̂� on 𝑥 is denoted by
ℎ̂(𝑥; �̂�).

The third step defines a semiparametric M-estimator ̂𝜃 that solves a moment equation
of the form

𝑛−1
𝑛

∑
𝑖=1

𝑚(𝑥𝑖, 𝜃, ℎ̂(𝑥𝑖; �̂�)) = 0.

Suppose that E(𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))) = 0. Moreover, assume that 𝑚 depends on ℎ only
through its value ℎ(𝑥). Our interest is to characterize the first-order asymptotic properties
of ̂𝜃.
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We derive the influence function of ̂𝜃 using the pathwise derivative approach in Newey
(1994a, page 1360-1361). For a path {𝐹𝜏}, that equals the true distribution of (𝑦, 𝑥, 𝑧) when
𝜏 = 𝜏∗, let 𝜇(𝐹𝜏) be the probability limit of ̂𝜃 if data were generated from 𝐹𝜏 . We have

E𝜏(𝑚(𝑥, 𝜇(𝐹𝜏), ℎ𝜏(𝑥; 𝑤𝜏))) = 0,

where 𝑤𝜏 = 𝜑(𝑥, 𝑧, 𝑝𝜏(𝑥, 𝑧)), 𝑝𝜏 = E𝜏(𝑦 | 𝑥, 𝑧), and ℎ𝜏(𝑥; 𝑤𝜏) = E𝜏(𝑤𝜏 | 𝑥). Let 𝑀 ≡
𝜕 E(𝑚(𝑥, 𝜃, ℎ∗(𝑥; 𝑤∗)))/𝜕𝜃∣

𝜃=𝜃∗
, and 𝑆(𝑦, 𝑥, 𝑧) = 𝜕 ln(d 𝐹𝜏)/𝜕𝜏 be score function (the deriva-

tives with respect to 𝜏 are always evaluated at 𝜏 = 𝜏∗). For expositional simplity, we write
𝜕 𝑓(𝑥∗)/𝜕𝑥 = 𝜕 𝑓(𝑥)/𝜕𝑥|𝑥=𝑥∗

for a generic function 𝑓(𝑥).
It can be shown by Newey’s pathwise derivative approach that −𝑀𝜕 𝜇(𝐹𝜏)/𝜕𝜏 equals

the sum of the following three terms

E(𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))𝑆(𝑦, 𝑥, 𝑧)), (i)

E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ (𝑤∗ − ℎ∗(𝑥))𝑆(𝑦, 𝑥, 𝑧)), (ii)

E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))
𝜕𝑝 (𝑦 − 𝑝∗(𝑥, 𝑧))𝑆(𝑦, 𝑥, 𝑧)). (iii)

Here term (i) corresponds to the leading term that captures the uncertainty left if we know
ℎ∗ and 𝑝∗, hence 𝑤∗. Term (ii) accounts for the sampling variation in estimating E(𝑤∗ | 𝑥),
when 𝑤∗ is known. Term (iii) reflects the sampling variation in ̂𝑝. It is easy to derive term
(ii) from (Newey, 1994a, page 1360-1361). Term (iii) needs more explanation.

Term (iii) is derived from the pathwise derivative

𝜕 E(𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤𝜏)))/𝜕𝜏 (47)

We have

eq. (47) = 𝜕 E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

𝜕ℎ∗(𝑥; 𝑤)
𝜕𝑤 [𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))

𝜕𝑝 𝑝𝜏])/𝜕𝑝

= 𝜕 E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ E(𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))

𝜕𝑝 𝑝𝜏 ∣ 𝑥))/𝜕𝑝

= 𝜕 E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))
𝜕𝑝 𝑝𝜏)/𝜕𝑝. (48)

The second line follows from the fact that ℎ∗(𝑥; 𝑤) = E(𝑤 | 𝑥) is a linear functional, so
its Fréchet derivative is itself. The last line follows from the law of iterated expectation.
Since 𝑝𝜏 = E𝜏(𝑦 | 𝑥, 𝑧) is projection, term (iii) can be derived from equation (4.5) of Newey
(1994a).

41



From term (i), (ii) and (iii), we conclude that the influence function of the three-step
estimator ̂𝜃 is

− 𝑀−1[𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗)) + 𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ (𝑤∗ − ℎ∗(𝑥))

+ 𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))
𝜕𝑝 (𝑦 − 𝑝∗(𝑥, 𝑧))].

Remark 4 (Difference between generated regressors and generated dependent variables).
Hahn and Ridder (2013) derives the asymptotic variance for semiparametric estimators
with generated regressors. The estimation there also proceeds in three steps. The estimator
in the first step is used to generate regressors for the nonparametric regression in the second
step. An interesting conclusion of their paper is that when third step estimator is linear in
the conditional mean estimated in the second step, the sampling variation in the first step
estimation does not affect the asymptotic variance of the three-step estimator. However, it
easy to see from term (iii) here that if the first step is to generate dependent variables rather
than regressors, the sampling variation in the first step will always affect the asymptotic
variance of the three-step estimator. ■

We next consider the case where the second step nonparametric regression involves par-
tial means instead of full means. In particular, suppose there is a discrete variable 𝑎 taking
value from 1,…,𝐾. In our dynamic discrete choice model, 𝑎 is 𝑦 itself. The second step is to
estimate

ℎ𝑘∗(𝑥; 𝑤∗) = E(𝑤∗ = 𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧)) ∣ 𝑥, 𝑎 = 𝑘).
The leading term does not change. Using the following identity,

ℎ𝑘∗(𝑥; 𝑤∗) = E(𝑤∗ = 𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧)) ∣ 𝑥, 𝑎 = 𝑘)

= E( 1(𝑎 = 𝑘)𝑤∗
Pr(𝑎 = 𝑘 | 𝑥) ∣ 𝑥),

we can show that second term now becomes

E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ ( 1(𝑎 = 𝑘)𝑤∗

Pr(𝑎 = 𝑘 | 𝑥) − ℎ𝑘∗(𝑥)) 𝑆(𝑦, 𝑥, 𝑧)).

For the third term, we have

eq. (47) = 𝜕 E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

𝜕ℎ∗(𝑥; 𝑤)
𝜕𝑤 [𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))

𝜕𝑝 𝑝𝜏])/𝜕𝑝

= 𝜕 E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ E(𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))

𝜕𝑝 𝑝𝜏 ∣ 𝑥, 𝑎 = 𝑘))/𝜕𝑝

= 𝜕 E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

1(𝑎 = 𝑘)
Pr(𝑎 = 𝑘 | 𝑥)

𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))
𝜕𝑝 𝑝𝜏)/𝜕𝑝.
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Hence the third adjustment term of the influence function is

E(𝜕𝑚(𝑥, 𝜃∗, ℎ∗(𝑥; 𝑤∗))
𝜕ℎ

1(𝑎 = 𝑘)
Pr(𝑎 = 𝑘 | 𝑥)

𝜕𝜑(𝑥, 𝑧, 𝑝∗(𝑥, 𝑧))
𝜕𝑝 (𝑦 − 𝑝∗(𝑥, 𝑧))𝑆(𝑦, 𝑥, 𝑧)).
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